1
|
Hafner-Bratkovič I, Gaedtke L, Ondracka A, Veranič P, Vorberg I, Jerala R. Effect of hydrophobic mutations in the H2-H3 subdomain of prion protein on stability and conversion in vitro and in vivo. PLoS One 2011; 6:e24238. [PMID: 21909425 PMCID: PMC3164720 DOI: 10.1371/journal.pone.0024238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/03/2011] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative diseases, which can be acquired, sporadic or genetic, the latter being linked to mutations in the gene encoding prion protein. We have recently described the importance of subdomain separation in the conversion of prion protein (PrP). The goal of the present study was to investigate the effect of increasing the hydrophobic interactions within the H2-H3 subdomain on PrP conversion. Three hydrophobic mutations were introduced into PrP. The mutation V209I associated with human prion disease did not alter protein stability or in vitro fibrillization propensity of PrP. The designed mutations V175I and T187I on the other hand increased protein thermal stability. V175I mutant fibrillized faster than wild-type PrP. Conversion delay of T187I was slightly longer, but fluorescence intensity of amyloid specific dye thioflavin T was significantly higher. Surprisingly, cells expressing V209I variant exhibited inefficient proteinase K resistant PrP formation upon infection with 22L strain, which is in contrast to cell lines expressing wild-type, V175I and T187I mPrPs. In agreement with increased ThT fluorescence at the plateau T187I expressing cell lines accumulated an increased amount of the proteinase K-resistant prion protein. We showed that T187I induces formation of thin fibrils, which are absent from other samples. We propose that larger solvent accessibility of I187 in comparison to wild-type and other mutants may interfere with lateral annealing of filaments and may be the underlying reason for increased conversion efficiency.
Collapse
Affiliation(s)
- Iva Hafner-Bratkovič
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Lars Gaedtke
- Institute of Virology, Technical University Munich, München, Germany
| | - Andrej Ondracka
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, School of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ina Vorberg
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
2
|
Structural insights into alternate aggregated prion protein forms. J Mol Biol 2009; 393:1033-42. [PMID: 19720066 DOI: 10.1016/j.jmb.2009.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/11/2009] [Accepted: 08/22/2009] [Indexed: 11/21/2022]
Abstract
The conversion of the cellular form of the prion protein (PrP(C)) to an abnormal, alternatively folded isoform (PrP(Sc)) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies. In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.
Collapse
|
3
|
Breydo L, Sun Y, Makarava N, Lee CI, Novitskaia V, Bocharova O, Kao JP, Baskakov IV. Nonpolar substitution at the C-terminus of the prion protein, a mimic of the glycosylphosphatidylinositol anchor, partially impairs amyloid fibril formation. Biochemistry 2007; 46:852-61. [PMID: 17223707 PMCID: PMC2522369 DOI: 10.1021/bi061923v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast to most amyloidogenic proteins or peptides that do not contain any significant posttranslational modifications, the prion protein (PrP) is modified with either one or two polysaccharides and a GPI anchor which attaches PrP to the plasma membrane. Like other amyloidogenic proteins, however, PrP adopts a fibrillar shape when converted to a disease-specific conformation. Therefore, PrP polymerization offers a unique opportunity to examine the effects of biologically relevant nonpeptidic modifications on conversion to the amyloid conformation. To test the extent to which a long hydrophobic chain at the C-terminus affects the intrinsic amyloidogenic propensity of PrP, we modified recombinant PrP with an N-myristoylamidomaleimidyl group, which can serve as a membrane anchor. We show that while this modification increases the affinity of PrP for the cell membrane, it does not alter the structure of the protein. Myristoylation of PrP affected amyloid formation in two ways: (i) it substantially decreased the extent of fibrillation, presumably due to off-pathway aggregation, and (ii) it prohibited assembly of filaments into higher order fibrils by preventing their lateral association. The negative effect on lateral association was abolished if the myristoylated moiety at the C-terminus was replaced by a polar group of similar size or by a hydrophobic group of smaller size. When preformed PrP fibrils were provided as seeds, myristoylated PrP supported fibril elongation and formation of higher order fibrils composed of several filaments. Our studies illustrate that, despite a bulky hydrophobic moiety at C-terminus, myristoylated PrP can still incorporate into fibrillar structure and that the C-terminal hydrophobic substitution does not affect the size of the proteinase K resistant core but controls the mode of lateral assembly of filaments into higher order fibrils.
Collapse
Affiliation(s)
- Leonid Breydo
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Ying Sun
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Natallia Makarava
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Cheng-I Lee
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Vera Novitskaia
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Olga Bocharova
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | - Joseph P.Y. Kao
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V. Baskakov
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- To whom correspondence should be addressed: 725 W. Lombard St., Baltimore, MD 21201. Phone: 410-706-4562; FAX: 410-706-8184.
| |
Collapse
|
4
|
Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV. Polymorphism and Ultrastructural Organization of Prion Protein Amyloid Fibrils: An Insight from High Resolution Atomic Force Microscopy. J Mol Biol 2006; 358:580-96. [PMID: 16519898 DOI: 10.1016/j.jmb.2006.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/16/2005] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Amyloid fibrils were produced from the full-length mouse prion protein (PrP) under solvent conditions similar to those used for the generation of synthetic prions from PrP 89-230. Analysis of the ultrastructure by atomic force microscopy revealed extremely broad polymorphism in fibrils formed under a single growth condition. Fibrils varied with respect to the number of constitutive filaments and the manner in which the filaments were assembled. PrP polymerization was found to show several peculiar features: (i) the higher-order fibrils/ribbons were formed through a highly hierarchical mechanism of assembly of lower-order fibrils/ribbons; (ii) the lateral assembly proceeded stepwise; at each step, a semi-stable fibrillar species were generated, which were then able to enter the next level of assembly; (iii) the assembly of lower into higher-order fibrils occurred predominantly in a vertical dimension via stacking of ribbons on top of each other; (iv) alternative modes of lateral association co-existed under a single growth condition; (iv) the fibrillar morphology changed even within individual fibrils, illustrating that alternative modes of filament assembly are inter-convertible and thermodynamically equivalent. The most predominant fibrillar types were classified into five groups according to their height, each of which was divided in up to three subgroups according to their width. Detailed analysis of ultrastructure revealed that the fibrils of the major subtype (height 3.61(+/-0.28)nm, width 31.1(+/-2.0)nm) were composed of two ribbons, each of which was composed of two filaments. The molecular volume calculations indicated that a single PrP molecule occupied a distance of approximately 1.2 nm within a single filament. High polymorphism in fibrils generated in vitro is reminiscent of high morphological diversity of scrapie-associated fibrils isolated from scrapie brains, suggesting that polymorphism is peculiar for polymerization of PrP regardless of whether fibrils are formed in vitro or under pathological conditions in vivo.
Collapse
Affiliation(s)
- Maighdlin Anderson
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
5
|
Masel J, Genoud N, Aguzzi A. Efficient Inhibition of Prion Replication by PrP-Fc2 Suggests that the Prion is a PrPSc Oligomer. J Mol Biol 2005; 345:1243-51. [PMID: 15644218 DOI: 10.1016/j.jmb.2004.10.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 08/30/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Soluble dimeric prion protein (PrP-Fc(2)) binds to the disease-associated prion protein PrP(Sc), and inhibits prion replication when expressed in transgenic mice. Prion inhibition is effective even if PrP-Fc(2) is expressed at low levels, suggesting that its affinity for PrP(Sc) is higher than that of monomeric PrP(C). Here, we model prion accumulation as an exponential replication cycle of prion elongation and breakage. The exponential growth rate corresponding to this cycle is reflected in the incubation period of the disease. We use a mathematical model to calculate the exponential growth rate, and fit the model to in vivo data on prion incubation times corresponding to different levels of PrP(C) and PrP-Fc(2). We find an excellent fit of the model to the data. Surprisingly, targeting of PrP(Sc) can be effective at concentrations of PrP-Fc(2) lower than that of PrP(C), even if PrP-Fc(2) and PrP(C) have the same affinity for PrP(Sc). The best fit of our model to data predicts that the replicative prion consists of PrP(Sc) oligomers with a mean size of four to 15 units.
Collapse
Affiliation(s)
- Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
6
|
Silveira JR, Caughey B, Baron GS. Prion protein and the molecular features of transmissible spongiform encephalopathy agents. Curr Top Microbiol Immunol 2004; 284:1-50. [PMID: 15148986 DOI: 10.1007/978-3-662-08441-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Transmissible spongiform encephalopathy (TSE) diseases, or prion diseases, are neurodegenerative diseases found in a number of mammals, including man. Although they are generally rare, TSEs are always fatal, and as of yet there are no practical therapeutic avenues to slow the course of disease. The epidemic of bovine spongiform encephalopathy (BSE) in the UK greatly increased the awareness of TSE diseases. Although it appears that BSE has not spread to North America, chronic wasting disease (CWD), a TSE found in cervids, is causing significant concern. Despite decades of investigation, the exact nature of the infectious agent of the TSEs is still controversial. Although many questions remain, substantial efforts have been made to understand the molecular features of TSE agents, with the hope of enhancing diagnosis and treatment of disease, as well as understanding the fundamental nature of the infectious agent itself. This review summarizes the current understanding of these molecular features, focusing on the role of the prion protein (PrP(c)) and its relationship to the disease-associated isoform (PrP(Sc)).
Collapse
Affiliation(s)
- J R Silveira
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Laboratories, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | |
Collapse
|
7
|
Caughey B, Raymond GJ, Callahan MA, Wong C, Baron GS, Xiong LW. Interactions and conversions of prion protein isoforms. ADVANCES IN PROTEIN CHEMISTRY 2002; 57:139-69. [PMID: 11447689 DOI: 10.1016/s0065-3233(01)57021-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- B Caughey
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
8
|
Callahan MA, Xiong L, Caughey B. Reversibility of Scrapie-associated Prion Protein Aggregation. J Biol Chem 2001; 276:28022-8. [PMID: 11375994 DOI: 10.1074/jbc.m103629200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl.
Collapse
Affiliation(s)
- M A Callahan
- Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
9
|
Abstract
The mechanism of protein-only prion replication is controversial. A detailed mathematical model of prion replication by nucleated polymerisation is developed, and its parameters are estimated from published data. PrP-res decay is around two orders of magnitude slower than PrP-sen decay, a plausible ratio of two parameters estimated from very different experiments. By varying the polymer breakage rate, we reveal that systems of short polymers grow the fastest. Drugs which break polymers could therefore accelerate disease progression. Growth in PrP-res seems slower than growth in infectious titre. This can be explained either by a novel hypothesis concerning inoculum clearance from a newly infected brain, or by the faster growth of compartments containing smaller polymers. The existence of compartments can also explain why prion growth sometimes reaches a plateau. Published kinetic data are all compatible with our mathematical model, so the nucleated polymerisation hypothesis cannot be ruled out on dynamic grounds.
Collapse
Affiliation(s)
- J Masel
- Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, UK.
| | | | | |
Collapse
|
10
|
Abstract
Prion diseases or transmissible spongiform encephalopathies belong to a group of neurodegenerative diseases that infect both animals and humans. These diseases are associated with an accumulation of fibrils in the brains of infected individuals. These fibrils are composed of an abnormal isoform of a host-encoded glycoprotein that is characterized by its insolubility and partial resistance to proteases. Another characteristic of the scrapie prion protein (PrPsc) is the wide range of isoelectric points (pI values) that have been observed on conventional isoelectrofocusing gels. In this study, we explored the use of capillary isoelectric focusing (cIEF) to characterize the pI values for PrPsc isolated from sheep and hamster brain. We used a Beckman 5500 P/ACE using UV detection at 280 nm. A cIEF 3-10 Kit from Beckman Instruments was used to perform the analysis. The PrPsc was solubilized in 0.01 M Tris-HCl, pH 8.00 containing 2 mM EDTA. 5% SDS and 10% hexafluoroisopropanol at 100 degrees C for 10 min. The solubilized PrPsc was placed over a high-performance hydrophilic interaction column. After elution, the peaks were concentrated and assayed for immunoreactivity with specific antisera. The peaks that contained immunoreactivity were then placed on the cIEF capillary. The samples containing PrPsc were solubilized in 1% n-octylglucoside before isoelectric focusing. The scrapie infected sheep sample had peaks with pI values ranging from 5.2 to 3.00 with a major peak at 3.09. The normal sheep brain had pI values that were higher. The hamster adapted scrapie strain had peaks with pI values ranging from 6.47 to 3.8. These pI values were slightly higher than those obtained for the sheep samples. The use of cIEF to determine the pI values of PrPsc led to the identification of a major species of PrPsc from sheep with a very acidic pI.
Collapse
Affiliation(s)
- M J Schmerr
- US Department of Agriculture, National Animal Disease Center, Ames, IA 50010, USA
| | | | | |
Collapse
|
11
|
Bessen RA, Raymond GJ, Caughey B. In situ formation of protease-resistant prion protein in transmissible spongiform encephalopathy-infected brain slices. J Biol Chem 1997; 272:15227-31. [PMID: 9182546 DOI: 10.1074/jbc.272.24.15227] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal neurodegenerative diseases that are characterized by the conversion of the normal host cellular prion protein (PrPC), to the abnormal protease-resistant prion protein isoform (PrP-res). It has been proposed, though not proven, that the infectious TSE agent consists solely of PrP-res and that PrP-res-induced conformational conversion of PrPC to additional PrP-res represents agent replication. In this study we demonstrate in situ conversion of protease-sensitive PrPC to PrP-res in TSE-infected brain slices. One step in this process is the binding of soluble PrPC to endogenous PrP-res deposits. The newly formed PrP-res associated with the slices in a pattern that correlated with the pre-existing brain distribution of PrP-res. Punctate in situ PrP conversion was observed in brain regions containing PrP-res amyloid plaques, and a more dispersed conversion product was detected in areas containing diffuse PrP-res deposits. These studies provide direct evidence that PrP-res formation involves the incorporation of soluble PrPC into both nonfibrillar and fibrillar PrP-res deposits in TSE-infected brain. Our findings suggest that the in situ PrP conversion reaction leads to additional polymerization of endogenous PrP-res aggregates and is analogous to the process of PrP-res fibril and subfibril growth in vivo.
Collapse
Affiliation(s)
- R A Bessen
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
12
|
Walker SG, Dale CJ, Lyddiatt A. Aqueous two-phase partition of complex protein feedstocks derived from brain tissue homogenates. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 680:91-6. [PMID: 8798885 DOI: 10.1016/0378-4347(95)00452-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study describes the application of aqueous two-phase partition using polyethylene glycol (PEG)-potassium phosphate systems for the direct recovery of proteins, and aggregates thereof, from mammalian brain tissue homogenates. Investigation of established methodologies for the purification of prion proteins (PrP) from bovine brain affected with transmissible spongiform encephalopathy (BSE) has identified an alternative purification regime based on aqueous two-phase partition. This circumvents energy-intensive and rate-limiting unit operations of ultracentrifugation conventionally used for isolation of PrP. Selectivity of various PEG-phosphate systems varied inversely with polymer molecular mass. The maximum protein recovery from bovine brain extracts was obtained with systems containing PEG 300. Manipulation of the aqueous environment, to back-extract protein product from the PEG-rich top phase into the phosphate-rich lower phase, enabled integration of ATPS with conventional hydrophobic interaction chromatography (HIC) which selectively removes obdurate contaminating proteins (i.e. ferritin).
Collapse
Affiliation(s)
- S G Walker
- BBSRC Centre for Biochemical Engineering, School of Chemical Engineering, University of Birmingham, UK
| | | | | |
Collapse
|
13
|
Somerville RA, Dunn AJ. The association between PrP and infectivity in scrapie and BSE infected mouse brain. Arch Virol 1996; 141:275-89. [PMID: 8634020 DOI: 10.1007/bf01718399] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The structure of the scrapie agent remains unknown. However, scrapie infectivity tends to co-sediment with an infection specific fraction of the glycoprotein PrP (PrPSc) under conditions which solubilise the normal form of this protein (PrPc); accordingly, PrP has been proposed as a candidate component of the agent. To investigate this further we have been examining a new scrapie-related murine model in conjunction with established scrapie models. A bovine spongiform encephalopathy (BSE) derived murine model has short incubation periods, high infectivity titre and low amounts of PrP deposited in the brain. A membrane fraction from scrapie/BSE infected brain is solubilised with Sarkosyl at pH > or = 9.0. Most PrP is also solubilised. In models of the disease with little deposition of the PrP in the brain, this solubilisation step is particularly effective in reducing the amounts of PrP sedimented from brain extracts. Gradient centrifugation of the sedimented fraction shows further separation of infectivity and the residual PrP. It is concluded that at least some PrPSc in the brain need not be associated directly with infectious agents but is deposited in brain solely as a pathological product of infection. However, a residual sedimentable fraction contains PrP which may be a component of the agent.
Collapse
Affiliation(s)
- R A Somerville
- BBSRC & MRC Neuropathogenesis Unit, Institute for Animal Health, Edinburgh, U.K
| | | |
Collapse
|
14
|
Jeffrey M, Goodbrand IA, Goodsir CM. Pathology of the transmissible spongiform encephalopathies with special emphasis on ultrastructure. Micron 1995; 26:277-98. [PMID: 7788281 DOI: 10.1016/0968-4328(95)00004-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transmissible spongiform encephalopathies are a group of genetic and infectious disorders which are exemplified by scrapie in animals and Creutzfeldt-Jakob disease in humans. The spongiform encephalopathies are characterized by symmetrical vacuolation of neurons and neuropil. Amyloid plaque formation similar to that found in Alzheimer's disease is conspicuous in many, but not all, of these diseases. The sub-cellular pathology features of the spongiform encephalopathies have been studied by conventional transmission electron microscopy, scanning electron microscopy, freeze fracture, negative staining and most recently by application of immunogold labelling methods. Although these studies have revealed many unusual structures, convincing virus-like particles have not been demonstrated. Considerable data, including important transgenic mouse studies, now suggest that a single cellular protein, designated prion protein, is necessary for infection. Ultrastructural immunogold studies have shown that prion protein is released from the surface of neurons and neurites, diffuses through the extracellular space around infected cells where it accumulates and finally becomes aggregated as amyloid fibrils. It is likely that the accumulation of prion protein within the extracellular space is instrumental in causing nerve cell dysfunction and, ultimately, neurological disease.
Collapse
Affiliation(s)
- M Jeffrey
- Lasswade Veterinary Laboratory, Penicuik, Midlothian, Scotland
| | | | | |
Collapse
|
15
|
Jeffrey M, Goodsir CM, Bruce M, McBride PA, Scott JR, Halliday WG. Correlative light and electron microscopy studies of PrP localisation in 87V scrapie. Brain Res 1994; 656:329-43. [PMID: 7820594 DOI: 10.1016/0006-8993(94)91477-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transmissible neurodegenerative diseases, of which scrapie is the archetype, are caused by unconventional infectious agents. Prion protein (PrP), a widespread host coded, cell surface sialoglycoprotein, is thought to be an essential or, controversially, sole component of these agents. During infection, disease specific accumulations of PrP may be observed in immunostained brain sections of mice infected with the 87V scrapie strain as amyloid plaques or as diffuse or granular foci within the neuropil. Using serial light and electron microscopical preparations we determined immunocytochemically that infection specific PrP is present in amyloid fibrils, and accumulates on the plasmalemma of neurites at the periphery of plaques and in the neuropil, irrespective of the morphological form of PrP accumulation when viewed by light microscopy. In some brain areas with dense granular PrP expression complete disruption of neuropil with loss of neurites was associated with fibrils lying free in expanded extracellular space. These results suggest that normal PrP may be converted to its pathological form at the neuronal plasmalemma or in the extracellular space and, furthermore, that amyloid fibrils are formed following the accumulation and aggregation of subunit proteins at these sites.
Collapse
Affiliation(s)
- M Jeffrey
- Lasswade Veterinary Laboratory, Penicuik, Midlothian, UK
| | | | | | | | | | | |
Collapse
|
16
|
Dealler S. Alkaloidal glycosidase inhibitors (AGIs) as the cause of sporadic scrapie, and the potential treatment of both transmissible spongiform encephalopathies (TSEs) and human immunodeficiency virus (HIV) infection. Med Hypotheses 1994; 42:69-75. [PMID: 8022334 DOI: 10.1016/0306-9877(94)90078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AGIs are produced by plants and microorgansims in the environment. They are absorbed from the gut, distributed throughout the body and are concentrated inside cells. AGIs alter the glycan chains of cellular glycoproteins (CGP) during their formation so that the same CGP produced by different clones of cells (and hence with different glycan chains) becomes structurally the same. Prion protein (PrP), a CGP, is rendered indestructable to cellular mechanisms (as PrPi) by the TSE infective process; it is suggested that AGIs could both cause and prevent this by altering the primary structure of PrP. HIV envelope protein, gp120, carries glycan chains that are decided by the clone of the cells by which it is produced. Each cellular clone would be expected to add a specific group of glycan chains, making the gp120 antigenically separate. As HIV infection progresses, infected clone numbers rise, the antigenic diversity of gp120 may rise as would antibody production, trying to keep pace. Antigenically stimulated CD4+ cells carrying HIV genes, increase HIV production with gp120 antigenically different from its stimulant. AGIs prevent the glycan diversity and may prevent the extension of HIV infection.
Collapse
Affiliation(s)
- S Dealler
- York District Hospital Microbiology Department, UK
| |
Collapse
|
17
|
Affiliation(s)
- M Pocchiari
- Section of Persistent and Slow Virus Infections, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| |
Collapse
|
19
|
Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, Frey W, Haase AT. Neuropathological changes in scrapie and Alzheimer's disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 1991; 65:4759-68. [PMID: 1870200 PMCID: PMC248933 DOI: 10.1128/jvi.65.9.4759-4768.1991] [Citation(s) in RCA: 235] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
With the rationale that the neuropathological similarities between scrapie and Alzheimer's disease reflect convergent pathological mechanisms involving altered gene expression, we set out to identify molecular events involved in both processes, using scrapie as a model to study the time course of these changes. We differentially screened a cDNA library constructed from scrapie-infected mice to identify mRNAs that increase or decrease during disease and discovered in this way two mRNAs that are increased in scrapie and Alzheimer's disease. These mRNAs were subsequently shown by sequence analysis to encode apolipoprotein E and cathepsin D (EC 3.4.23.5). Using in situ hybridization and immunocytochemistry to define the cellular and anatomic pathology of altered gene expression, we found that in both diseases the increase in apolipoprotein E and cathepsin D mRNAs and proteins occurred in activated astrocytes. In scrapie, the increase in gene expression occurred soon after the amyloid-forming abnormal isoform of the prion protein has been shown to accumulate in astrocytes. In Alzheimer's disease, the increased expression of cathepsin D also occurred in association with beta-amyloid. These studies reveal some of the molecular antecedents of neuropathological changes in scrapie and Alzheimer's disease and accord new prominence to the role of astrocytes in neurodegenerative conditions.
Collapse
Affiliation(s)
- J F Diedrich
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Prions cause transmissible and genetic neurodegenerative diseases, including scrapie and bovine spongiform encephalopathy of animals and Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases of humans. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein, which is encoded by a chromosomal gene. A posttranslational process, as yet unidentified, converts the cellular prion protein into an abnormal isoform. Scrapie incubation times, neuropathology, and prion synthesis in transgenic mice are controlled by the prion protein gene. Point mutations in the prion protein genes of animals and humans are genetically linked to development of neuro-degeneration. Transgenic mice expressing mutant prion proteins spontaneously develop neurologic dysfunction and spongiform neuropathology. Understanding prion diseases may advance investigations of other neurodegenerative disorders and of the processes by which neurons differentiate, function for decades, and then grow senescent.
Collapse
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| |
Collapse
|
21
|
McKinley MP, Meyer RK, Kenaga L, Rahbar F, Cotter R, Serban A, Prusiner SB. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 1991; 65:1340-51. [PMID: 1704926 PMCID: PMC239910 DOI: 10.1128/jvi.65.3.1340-1351.1991] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Scrapie prion infectivity can be enriched from hamster brain homogenates by using limited proteolysis and detergent extraction. Purified fractions contain both scrapie infectivity and the protein PrP 27-30, which is aggregated in the form of prion rods. During purification, PrP 27-30 is produced from a larger membrane protein, PrPSc, by limited proteolysis with proteinase K. Brain homogenates from scrapie-infected hamsters do not contain prion rods prior to exposure to detergents and proteases. To determine whether both detergent extraction and limited proteolysis are required for the formation of prion rods, microsomal membranes were prepared from infected brains in the presence of protease inhibitors. The isolated membranes were then detergent extracted as well as protease digested to evaluate the effects of these treatments on the formation of prion rods. Neither detergent (2% Sarkosyl) extraction nor limited proteinase K digestion of scrapie microsomes produced recognizable prion amyloid rods. Only after combining detergent extraction with limited proteolysis were numerous prion rods observed. Rod formation was influenced by the protease concentration, the specificity of the protease, and the duration of digestion. Rod formation also depended upon the detergent; some combinations of protease and detergent did not produce prion amyloid rods. Similar results were obtained with purified PrPSc fractions prepared by repeated detergent extractions in the presence of protease inhibitors. These fractions contained amorphous structures but not rods; however, prion rods were produced upon conversion of PrPSc to PrP 27-30 by limited proteolysis. We conclude that the formation of prion amyloid rods in vitro requires both detergent extraction and limited proteolysis. In vivo, amyloid filaments found in the brains of animals with scrapie resemble prion rods in their width and their labeling with prion protein (PrP) antisera; however, filaments are typically longer than rods. Whether limited proteolysis and some process equivalent to detergent extraction are required for amyloid filament formation in vivo remains to be established.
Collapse
Affiliation(s)
- M P McKinley
- Department of Neurology, University of California, San Francisco 94143
| | | | | | | | | | | | | |
Collapse
|
22
|
Isomura H, Shinagawa M, Ikegami Y, Sasaki K, Ishiguro N. Morphological and biochemical evidence that scrapie-associated fibrils are derived from aggregated amyloid-like filaments. Virus Res 1991; 18:191-201. [PMID: 1675031 DOI: 10.1016/0168-1702(91)90018-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The membrane fraction from scrapie infected mouse brains was dissolved in saturated urea, centrifuged on a 10 to 50% glycerol gradient at 35,000 rpm for 24 h, and fractionated from the bottom of the tube into 11 fractions. PrP was detected throughout the gradient. However, the relative PrP concentrations of fractions 4 and 8 were the highest. The relative PrP concentration versus protein concentration of fractions 1 to 4 was higher than that of the other fractions. Scrapie infectivity also was detected in all fractions. Fractions 2, 3, 4, 7, and 8 produced the shortest incubation periods. Positively stained filamentous aggregates with sizes varying from about 40 x 60 nm to more than 4 microns were observed in fractions 2 and 4 by negative staining. These resembled amyloid filaments. Congo red-stained aggregates showed birefringence under polarized light. Aggregation of the filamentous aggregates was observed by incubation with anti-mouse SAF serum. Fine fibrils 10-18 nm in width were partially dissociated from the aggregates by brief exposure to the detergent Sarkosyl. These facts suggest that SAF are not products of self-assembly from subunit structures liberated from membranes by exposure to detergent, but exist as aggregates of amyloid-like filaments from which SAF are dissociated by detergent extraction.
Collapse
Affiliation(s)
- H Isomura
- Department of Veterinary Public Health, School of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- M P McKinley
- Department of Neurology, University of California, San Francisco 94143
| | | |
Collapse
|
24
|
Abstract
Considerable progress has been made deciphering the role of an abnormal isoform of the prion protein (PrP) in scrapie of animals and Gerstmann-Sträussler syndrome (GSS) of humans. Some transgenic (Tg) mouse (Mo) lines that carry and express a Syrian hamster (Ha) PrP gene developed scrapie 75 d after inoculation with Ha prions; non-Tg mice failed to show symptoms after greater than 500 d. Brains of these infected Tg(HaPrP) mice featured protease-resistant HaPrPSc, amyloid plaques characteristic for Ha scrapie, and 10(9) ID50 units of Ha-specific prions upon bioassay. Studies on Syrian, Armenian, and Chinese hamsters suggest that the domain of the PrP molecule between codons 100 and 120 controls both the length of the incubation time and the deposition of PrP in amyloid plaques. Ataxic GSS in families shows genetic linkage to a mutation in the PrP gene, leading to the substitution of Leu for Pro at codon 102. Discovery of a point mutation in the Prp gene from humans with GSS established that GSS is unique among human diseases--it is both genetic and infectious. These results have revised thinking about sporadic Creutzfeldt-Jakob disease, suggesting it may arise from a somatic mutation. These findings combined with those from many other studies assert that PrPSc is a component of the transmissible particle, and the PrP amino acid sequence controls the neuropathology and species specificity of prion infectivity. The precise mechanism of PrPSc formation remains to be established. Attempts to demonstrate a scrapie-specific nucleic acid within highly purified preparations of prions have been unrewarding to date. Whether transmissible prions are composed only of PrPSc molecules or do they also contain a second component such as small polynucleotide remains uncertain.
Collapse
Affiliation(s)
- S B Prusiner
- Department of Neurology, University of California, San Francisco 94143
| |
Collapse
|
25
|
Affiliation(s)
- R Gabizon
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|