1
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
2
|
Zhai T, Yan J, Wang J, Kong D, Hou L, Deng Y, Gu G, Wang T, Wang X, Xue Q, Yin C, Cheng J, Xu G, Mao Y. Identification of avian polyomavirus and its pathogenicity to SPF chickens. Front Microbiol 2024; 14:1320264. [PMID: 38235429 PMCID: PMC10792035 DOI: 10.3389/fmicb.2023.1320264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The research aimed to study an Avian polyomavirus strain that was isolated in Shandong, China. To study the pathogenicity of APV in SPF chickens, and provide references for epidemiological research and disease prevention and control of APV. The genetic characterization of APV strain (termed APV-20) was analyzed and the pathogenicity of APV was investigated from two aspects: different age SPF chickens, and different infection doses. The results revealed that the APV-20 exhibits a nucleotide homology of 99% with the other three APV strains, and the evolution of APV In China was slow. In addition, the APV-20 infection in chickens caused depression, drowsiness, clustering, and fluffy feathers, but no deaths occurred in the infected chickens. The main manifestations of necropsy, and Hematoxylin and Eosin staining (HE) showed that one-day-old SPF chickens were the most susceptible, and there was a positive correlation between viral load and infection dose in the same tissue. This study showed that SPF chickens were susceptible to APV, and an experimental animal model was established. This study can provide a reference for the pathogenic mechanism of immune prevention and control of APV.
Collapse
Affiliation(s)
- Tianshu Zhai
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jiajia Yan
- China Institute of Veterinary Drug Control, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jia Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Dongni Kong
- China Institute of Veterinary Drug Control, Beijing, China
| | - Lidan Hou
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yong Deng
- China Institute of Veterinary Drug Control, Beijing, China
| | - Guoqian Gu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xi Wang
- China Institute of Veterinary Drug Control, Beijing, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jia Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yaqing Mao
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
3
|
Yun YJ, Song H, Kwon YK, Park CK, Kim HR. Genetic characterization of avian polyomaviruses identified from psittacine birds in South Korea. Avian Pathol 2023; 52:420-425. [PMID: 37565272 DOI: 10.1080/03079457.2023.2247347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Budgerigar fledgling disease (BFD) is a contagious disease caused by avian polyomavirus (APV) in psittacine birds and causes high mortality rates. Here, eight APV-positive cases were confirmed from dead parrots or parrot tissue samples by polymerase chain reaction (PCR). Full-length genome sequencing showed high nucleotide identity (98.84-100%) between the APV strains. Phylogenetic analysis revealed that two genogroups were cocirculating in South Korea. The nucleotide sequences of five strains, collected from different parrot species, were identical; however, pathological lesions were observed in only two parrots, both aged 2 months. Pathology included necrotic spots in the liver, subcutaneous haemorrhage, hepatomegaly, ascites, intranuclear inclusion bodies, hepatocyte karyomegaly, hepatic necrosis, and bile duct proliferation. This suggests that the pathogenicity of APV might be host age-dependent regardless of the host species. This study improves our understanding of APV pathogenicity and provides a more detailed genetic characterization of APV strains.RESEARCH HIGHLIGHTS Eight APV strains were identified in South Korea from 2019 to 2021.By phylogenetic analysis, South Korean APV strains were classified into two clades.
Collapse
Affiliation(s)
- Ye-Ji Yun
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
4
|
Styś-Fijoł N, Kozdruń W, Piekarska K, Niczyporuk JS. Molecular analysis Polish isolates of goose hemorrhagic polyomavirus from geese and free-living birds. Heliyon 2023; 9:e17083. [PMID: 37484428 PMCID: PMC10361228 DOI: 10.1016/j.heliyon.2023.e17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Goose haemorrhagic polyomavirus (GHPV) is the viral agent of hemorrhagic nephritis and enteritis of geese (HNEG), a lethal disease of goose. The study describes the results of a molecular analysis Polish isolates of GHPV from geese and free-living birds based on complete VP1 gene and VP2 gene sequences. The sequences were analyzed and aligned with different GHPV isolates sequences accessible in the GenBank database. This study indicates affiliation GHPV isolates from fee-living birds and GHPV isolates circulating in Polish goose flocks and around the world to the same genetic groups, which proves their evolutionary relationship and indicates the potential role of free-living birds as a source of infections for poultry.
Collapse
|
5
|
Wang CW, Chen YL, Mao SJT, Lin TC, Wu CW, Thongchan D, Wang CY, Wu HY. Pathogenicity of Avian Polyomaviruses and Prospect of Vaccine Development. Viruses 2022; 14:v14092079. [PMID: 36146885 PMCID: PMC9505546 DOI: 10.3390/v14092079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polyomaviruses are nonenveloped icosahedral viruses with a double-stranded circular DNA containing approximately 5000 bp and 5–6 open reading frames. In contrast to mammalian polyomaviruses (MPVs), avian polyomaviruses (APVs) exhibit high lethality and multipathogenicity, causing severe infections in birds without oncogenicity. APVs are classified into 10 major species: Adélie penguin polyomavirus, budgerigar fledgling disease virus, butcherbird polyomavirus, canary polyomavirus, cormorant polyomavirus, crow polyomavirus, Erythrura gouldiae polyomavirus, finch polyomavirus, goose hemorrhagic polyomavirus, and Hungarian finch polyomavirus under the genus Gammapolyomavirus. This paper briefly reviews the genomic structure and pathogenicity of the 10 species of APV and some of their differences in terms of virulence from MPVs. Each gene’s genomic size, number of amino acid residues encoding each gene, and key biologic functions are discussed. The rationale for APV classification from the Polyomavirdae family and phylogenetic analyses among the 10 APVs are also discussed. The clinical symptoms in birds caused by APV infection are summarized. Finally, the strategies for developing an effective vaccine containing essential epitopes for preventing virus infection in birds are discussed. We hope that more effective and safe vaccines with diverse protection will be developed in the future to solve or alleviate the problems of viral infection.
Collapse
Affiliation(s)
- Chen-Wei Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuan Pei University of Medical Technology, Yuanpei Street, Hsinchu 300, Taiwan
| | - Simon J. T. Mao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chieh Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Ching-Wen Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Duangsuda Thongchan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Nakhon Ratchasima 30000, Thailand
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| |
Collapse
|
6
|
Liu FL, Chang SP, Liu HJ, Liu PC, Wang CY. Genomic and phylogenetic analysis of avian polyomaviruses isolated from parrots in Taiwan. Virus Res 2022; 308:198634. [PMID: 34793873 DOI: 10.1016/j.virusres.2021.198634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
Avian polyomavirus (APV) is a non-enveloped virus with a circular double-stranded DNA genome approximately 5000 bp in length. APV was first reported in fledgling budgerigars (Melopsittacus undulatus) as the causative agent of budgerigar fledgling disease, resulting in high parrot mortality rates in the 1980s. This disease has been observed worldwide, and APV has a wide host range including budgerigars, cockatoos, lorikeets, lovebirds, and macaws. Twenty APV isolates have been collected from healthy and symptomatic parrots in Taiwan from 2015 to 2019. These isolates were then amplified via polymerase chain reaction, after which the whole genomes of these isolates were sequenced. The overall APV-positive rate was 14.2%, and the full lengths of the APV Taiwan isolates varied from 4971 to 4982 bps. The APV genome contains an early region that encodes two regulatory proteins (the large tumor antigen (Large T-Ag) and the small tumor antigen (Small t-Ag)) and a late region which encodes the capsid proteins VP1, VP2, VP3, and VP4. The nucleotide identities of the VP1 and VP4 genes ranged from 98.7 to 100%, whereas the nucleotide sequence of the Large T-Ag gene had the highest identity (99.2-100%) relative to other APV isolates from the GenBank database. A phylogenetic tree based on the whole genome demonstrated that the APV Taiwan isolates were closely related to Japanese and Portuguese isolates. Recombination events were analyzed using the Recombination Detection Program version 4 and APV Taiwan isolate TW-3 was identified as a minor parent of the APV recombinants. In this study, we first reported the characterization of the whole genome sequences of APV Taiwan isolates and their phylogenetic relationships with all APV isolates available in the GenBank database.
Collapse
Affiliation(s)
- Fang-Lin Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Shu-Ping Chang
- Department of Laboratory, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Changhua, Lugang, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Pan-Chen Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan.
| |
Collapse
|
7
|
González-Hein G, Gil IA, Sanchez R, Huaracan B. Prevalence of Aves Polyomavirus 1 and Beak and Feather Disease Virus From Exotic Captive Psittacine Birds in Chile. J Avian Med Surg 2020; 33:141-149. [PMID: 31251501 DOI: 10.1647/2018-349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Avian polyomavirus disease and psittacine beak and feather disease (PBFD) are both contagious viral diseases in psittacine birds with similar clinical manifestations and characterized by abnormal feathers. To determine the prevalence of Aves polyomavirus 1 (APyV) and beak and feather disease virus (BFDV) in captive, exotic psittacine birds in Chile, feathers from 250 psittacine birds, representing 17 genera, were collected and stored during the period 2013-2016. Polymerase chain reaction testing was used to detect APyV and BFDV were detected in feather bulb samples. The results indicated that 1.6% (4/250) of the samples were positive for APyV, 23.2% (58/250) were positive to BFDV, and 0.8% (2/250) were positive to both APyV and BFDV. This is the first report, to our knowledge, of APyV and BFDV prevalence in captive, exotic psittacine birds in South America. Analysis of 2 Chilean partial sequences of the gene encoding agnoprotein 1a (APyV) and the replication-associated protein (BFDV) extends the knowledge of genomic variability for both APyV and BFDV isolates and their spectrum of hosts. No geographical marker was detected for the local isolates.
Collapse
Affiliation(s)
| | - Isabel Aguirre Gil
- Laboratorio de Biotecnología y Patología Acuaática, Departamento de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Isla Teja, Valdivia 5090000, Chile
| | - Rodolfo Sanchez
- Bioingentech, Bernardo O'Higgins 1186 oficina 1307, Concepción 4070242, Chile
| | - Bernardo Huaracan
- Bioingentech, Bernardo O'Higgins 1186 oficina 1307, Concepción 4070242, Chile
| |
Collapse
|
8
|
Ma J, Wu R, Tian Y, Zhang M, Wang W, Li Y, Tian F, Cheng Y, Yan Y, Sun J. Isolation and characterization of an Aves polyomavirus 1 from diseased budgerigars in China. Vet Microbiol 2019; 237:108397. [PMID: 31585638 DOI: 10.1016/j.vetmic.2019.108397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/19/2023]
Abstract
Aves polyomavirus 1 (APV) causes inflammatory disease in psittacine birds, especially in young budgerigar. In this study, an APV virus (SD18 strain) was isolated from a diseased psittacine birds breeding facility. The full genome (4981 bp) of SD18 was determined and analyzed. Phylogenetic analysis of full genome sequences indicated all the APV strains form two groups. The SD18 strain showed close relationship with APV isolated from Poland, however, the other Chinese strains are located in group II, which suggested different genotypes APVs are co-circulating in China. Compared with the consensus sequence of APV full genome, the SD18 strain contains 13 nucleotide mutations, and 2 unique amino acid substitutions (R179M and Q382K) located in VP2/3 and Large T proteins. To explore the pathogenicity of the virus, the SD18 strain was used to challenge 2-week-old budgerigars. All infected birds died no later than 5 days post infection, and virus was detected in multiple organs including brain, heart, ingluvies, liver, and intestine, which indicated that SD18 is fatal and causes systemic infection in young budgerigar. In vitro studies showed that SD18 replicated efficiently in CEF cells and reached the highest viral titers at 9 days post infection. Notably, replication of SD18 stimulated IFN-β response in CEF cells and overexpression of the VP4 or VP4Delta proteins significantly inhibited IFN-β promoter activation, which could be the strategy of APV to escape from the host innate immunity.
Collapse
Affiliation(s)
- Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujuan Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ye Tian
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong, China
| | - Min Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong, China
| | - Weili Wang
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, Jilin, China
| | - Yujie Li
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong, China
| | - Fulin Tian
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Park MJ, Kim HR, Chae HG, Lim DR, Kwon OD, Cho KH, Park CK. Development of a colorimetric loop-mediated isothermal amplification assay for rapid and specific detection of Aves polyomavirus 1 from psittacine birds. J Virol Methods 2019; 273:113687. [PMID: 31271791 DOI: 10.1016/j.jviromet.2019.113687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022]
Abstract
A colorimetric loop-mediated isothermal amplification (LAMP) assay was developed for the rapid and specific detection of the T gene of Aves polyomavirus 1 (APyV), a causative agent of budgerigar fledgling disease (BFD) in psittacine birds. The amplification can be completed in 40 min at 60 °C, and the results can be visually detected by the naked eye using hydroxyl naphthol blue as a colorimetric indicator. The assay specifically amplified APyV DNA but not other viral and bacterial nucleic acids. The limit of detection of the assay was 5 × 102 DNA copies/reaction, which was comparable to those of previously reported conventional polymerase chain reaction assays. In the clinical evaluation, the LAMP results showed 100% concordance with those of the previously reported PCR assays with regard to specificity, sensitivity, and percentage of overall agreement, with a kappa value of 1.0. These results indicate that the developed LAMP assay will be a valuable tool for the rapid, sensitive and specific detection of APyV from BFD-suspected psittacine bird samples even in resource-limited laboratories.
Collapse
Affiliation(s)
- Min-Ji Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ha-Gyeong Chae
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Da-Rae Lim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwang-Hyun Cho
- Gyeongbuk Veterinary Service Laboratory, Daegu, 41405, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Identification and genetic characterization of polyomaviruses in estrildid and fringillid finches. Arch Virol 2018; 163:895-909. [DOI: 10.1007/s00705-017-3688-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
|
11
|
Henriques AM, Fagulha T, Barros SC, Ramos F, Duarte MD, Luís T, Carvalho P, Mendonça P, Monteiro M, Craveiro H, Fevereiro M. AVES POLYOMAVIRUS 1 IN ARA CHLOROPTERA AND ECLECTUS RORATUS WITH DISCLOSURE OF FULL GENOMIC SEQUENCES. J Exot Pet Med 2018. [DOI: 10.1053/j.jepm.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Mészáros I, Tóth R, Bálint Á, Dán Á, Jordan I, Zádori Z. Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin. Avian Pathol 2014; 43:379-86. [DOI: 10.1080/03079457.2014.939941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Fitzgerald B, Olsen G, Speer B. Laboratory reporting accuracy of polymerase chain reaction testing for avian polyomavirus. J Avian Med Surg 2013; 27:32-7. [PMID: 23772454 DOI: 10.1647/2012-014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polymerase chain reaction (PCR) assays are available for detection of birds infected with avian polyomavirus (APV). Several laboratories offer this diagnostic assay in the United States, but little information is available regarding assay sensitivity, specificity, and accuracy. In this study, known APV-positive and APV-negative samples (each n = 10, 5 undiluted and 5 diluted) were sent to 5 commercial laboratories. A significant difference in reporting accuracy was found among laboratories, most notably for dilute APV-positive samples. Two out of 5 laboratories provided 100% accurate results, 1 had an accuracy of 90%, and 2 reported 80% and 75% accuracy, respectively. The accuracies of the last 2 laboratories were negatively affected by test sensitivities of 60% and 50%, respectively. These findings show that although accurate results were reported by most laboratories, both false-positive and false-negative results were reported by at least 3 laboratories, and false-negative results reported for dilute APV-positive samples predominated. These study findings illustrate a need for veterinary diagnostic laboratories to institute improved voluntary quality control measures.
Collapse
Affiliation(s)
- Brenna Fitzgerald
- The Medical Center for Birds, 3805 Main Street, Oakley, CA 94561, USA
| | | | | |
Collapse
|
14
|
Zielonka A, Gedvilaite A, Reetz J, Rösler U, Müller H, Johne R. Serological cross-reactions between four polyomaviruses of birds using virus-like particles expressed in yeast. J Gen Virol 2012; 93:2658-2667. [DOI: 10.1099/vir.0.044917-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyomaviruses are aetiological agents of fatal acute diseases in various bird species. Genomic analysis revealed that avian polyomavirus (APyV), crow polyomavirus (CPyV), finch polyomavirus (FPyV) and goose hemorrhagic polyomavirus (GHPyV) are closely related to each other, but nevertheless form separate viral species; however, their serological relationship was previously unknown. As only APyV can be grown efficiently in tissue culture, virus-like particles (VLPs) were generated by expression of the genomic regions encoding the major structural protein VP1 of these viruses in yeast; these were used to elicit type-specific antibodies in rabbits and as antigens in serological reactions. For increased VLP assembly, a nuclear-localization signal was introduced into APyV-VP1. VLPs derived from the VP1 of the monkey polyomavirus simian virus 40 served as control. APyV-, GHPyV- and CPyV-VLPs showed haemagglutinating activity with chicken and human erythrocytes. CPyV- and GHPyV-specific sera showed slight cross-reactions in immunoblotting, haemagglutination-inhibition assay and indirect ELISA. The FPyV-specific serum inhibited the haemagglutination activity of APyV-VLPs slightly and showed a weak cross-neutralizing activity against APyV in cell-culture tests. Generally, these data indicate that the four polyomaviruses of birds are serologically distinct. However, in accordance with genetic data, a relationship between CPyV and GHPyV as well as between APyV and FPyV is evident, and grouping into two different serogroups may be suggested. The haemagglutinating activity of APyV, CPyV and GHPyV may indicate similar receptor-binding mechanisms for these viruses. Our data could be useful for the development of vaccines against the polyomavirus-induced diseases in birds and for interpretation of diagnostic test results.
Collapse
Affiliation(s)
- Anja Zielonka
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Alma Gedvilaite
- Vilnius University, Institute of Biotechnology, Graiciuno 8, Vilnius, Lithuania
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Uwe Rösler
- Institute of Animal and Environmental Hygiene, Free University Berlin, Philippstrasse 13, 10115 Berlin, Germany
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
15
|
Zhuang Q, Chen J, Mushtaq MH, Chen J, Liu S, Hou G, Li J, Huang B, Jiang W. Prevalence and genetic characterization of avian polyomavirus and psittacine beak and feather disease virus isolated from budgerigars in Mainland China. Arch Virol 2011; 157:53-61. [DOI: 10.1007/s00705-011-1138-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022]
|
16
|
Detection of chimpanzee polyomavirus-specific antibodies in captive and wild-caught chimpanzees using yeast-expressed virus-like particles. Virus Res 2011; 155:514-9. [DOI: 10.1016/j.virusres.2010.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
|
17
|
Shen PS, Enderlein D, Nelson CDS, Carter WS, Kawano M, Xing L, Swenson RD, Olson NH, Baker TS, Cheng RH, Atwood WJ, Johne R, Belnap DM. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4. Virology 2011; 411:142-52. [PMID: 21239031 DOI: 10.1016/j.virol.2010.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.
Collapse
Affiliation(s)
- Peter S Shen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Palya V, Ivanics E, Glávits R, Dán A, Mató T, Zarka P. Epizootic occurrence of haemorrhagic nephritis enteritis virus infection of geese. Avian Pathol 2010; 33:244-50. [PMID: 15276995 DOI: 10.1080/0307945042000195740] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent outbreaks of haemorrhagic nephritis enteritis in geese flocks of 3 to 10 weeks in age in Hungary were investigated. Mortality varied between 4% and 67%. Affected birds generally died suddenly. Occasional clinical signs included tremors of the head and neck, subcutaneous haemorrhages and excretion of faeces containing partly digested blood. At necropsy the most frequent findings were a turgid wall and reddish mucosa of the intestines and reddish discolouration of the swollen kidneys, but oedema and haemorrhages of the subcutaneous connective tissue, hydropericardium and ascites were also seen. In subacute cases, visceral gout was frequently observed. Histological examination revealed zonal necrosis of the tubular epithelial cells with haemorrhages in the kidney. Other histological findings were serous hepatitis with fatty infiltration, necrotizing haemorrhagic enteritis and haemorrhages in the different organs including the brain. Experimental geese infected parenterally with crude liver and spleen homogenates prepared from diseased birds died after 8 to 20 days without premonitory signs, and had typical gross and histological lesions. Attempts to isolate cytopathic virus on different tissue cultures failed. The presence of polyomavirus was proven by polymerase chain reaction. Five isolates were further investigated by analysing their complete VP1 gene sequence. All tested strains were very closely related to each other on the basis of the nucleotide sequence, and they were identical at the deduced amino acid level.
Collapse
Affiliation(s)
- Vilmos Palya
- CEVA-Phylaxia Biologicals Co. Ltd Szállás utca 5 H-1107 Budapest.
| | | | | | | | | | | |
Collapse
|
19
|
Halami MY, Dorrestein GM, Couteel P, Heckel G, Müller H, Johne R. Whole-genome characterization of a novel polyomavirus detected in fatally diseased canary birds. J Gen Virol 2010; 91:3016-22. [PMID: 20797969 DOI: 10.1099/vir.0.023549-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyomaviruses of birds are aetiological agents of acute inflammatory diseases in non-immunocompromised hosts, which is in contrast to mammalian polyomaviruses. VP4, an additional structural protein encoded by the viral genomes of the known avian polyomaviruses, has been suggested to contribute to pathogenicity through loss of cells following induction of apoptosis. Four distinct bird polyomaviruses have been identified so far, which infect crows, finches, geese and parrots. Using broad-spectrum PCR, a novel polyomavirus, tentatively designated canary polyomavirus (CaPyV), was detected in diseased canary birds (Serinus canaria) that died at an age of about 40 days. Intranuclear inclusion bodies were found in the liver, spleen and kidneys. The entire viral genome was amplified from a tissue sample using rolling-circle amplification. Phylogenetic analysis of the genome sequence indicated a close relationship between CaPyV and other avian polyomaviruses. Remarkably, an ORF encoding VP4 could not be identified in the CaPyV genome. Therefore, the mechanism of pathogenicity of CaPyV may be different from that of the other avian polyomaviruses.
Collapse
Affiliation(s)
- Mohammad Yahya Halami
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Katoh H, Ogawa H, Ohya K, Fukushi H. A review of DNA viral infections in psittacine birds. J Vet Med Sci 2010; 72:1099-106. [PMID: 20424393 DOI: 10.1292/jvms.10-0022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To date, several DNA viral infections have been reported in psittacine birds. Psittacine beak and feather disease (PBFD) is characterized by symmetric feather dystrophy and loss and development of beak deformities. PBFD is caused by beak and feather virus, which belongs to the Circoviridae, and is the most important infection in psittacine birds worldwide. Avian polyomavirus infection causes acute death, abdominal distention, and feather abnormalities. Pacheco's disease (PD), which is caused by psittacid herpesvirus type 1, is an acute lethal disease without a prodrome. Psittacine adenovirus infections are described as having a clinical progression similar to PD. The clinical changes in psittacine poxvirus-infected birds include serious ocular discharge, rhinitis, and conjunctivitis, followed by the appearance of ulcerations on the medial canthi of the eyes. Internal papillomatosis of parrots (IPP) is a tumor disease characterized by progressive development of papillomas in the oral and cloacal mucosa. IPP has been suggested to caused by papillomavirus or herpesvirus. However, information about these diseases is limited. Here we review the etiology, clinical features, pathology, epidemiology, and diagnosis of these DNA viruses.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | |
Collapse
|
21
|
Arroube AS, Halami MY, Johne R, Dorrestein GM. Mortality due to polyomavirus infection in two nightjars (Caprimulgus europaeus). J Avian Med Surg 2009; 23:136-40. [PMID: 19673460 DOI: 10.1647/2008-007.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two nightjars (Caprimulgus europaeus) from a bird park in the Netherlands died suddenly, with no clinical signs, within 1 month of each other. The main pathologic findings at necropsy were splenomegaly and hepatic necrosis. On histologic examination, intranuclear viral inclusion bodies consistent with avian polyomavirus were observed in the liver, spleen, and kidneys. Polymerase chain reaction testing of samples from the liver, spleen, and kidneys detected avian polyomaviral DNA, and sequence analysis showed that the virus had a sequence homology of 99% to psittacine avian polyomavirus strains. To our knowledge, this is the first report of avian polyomavirus infection in the order Caprimulgiformes. Lovebirds (Agapornis species), which were housed near the nightjars, were considered as the possible source of infection.
Collapse
|
22
|
Garner MM, Latimer KS, Mickley KA, Ritzman TK, Nordhausen RW. Histologic, immunohistochemical, and electron microscopic features of a unique pulmonary tumor in cockatiels (Nymphicus hollandicus): six cases. Vet Pathol 2009; 46:1100-8. [PMID: 19605913 DOI: 10.1354/vp.08-vp-0136-g-fl] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unique form of pulmonary malignancy develops in cockatiels. This report describes the gross, histologic, electron microscopic, and immunohistochemical features of this tumor in 6 cockatiels. DNA in-situ hybridization for polyomavirus in the neoplasm was also performed. The tumor was comprised predominantly of compact sheets of anaplastic round to polygonal cells. All tumors had a high mitotic index, and had occasional large clear to slightly basophilic intranuclear inclusions that caused peripheral dispersal or complete masking of chromatin. Tumors were invasive but convincing metastases were not observed. Transmission electron microscopy identified intracytoplasmic intermediate filaments, desmosomes between cells, and intranuclear cytoplasmic invaginations corresponding to the intranuclear inclusions in light microscopic sections. Neoplastic cells stained positive for vimentin, lysozyme, and in 1 bird, pan cytokeratin. All 6 pulmonary neoplasms were negative for avian polyomavirus using the FN-19/FN-40 cocktail and the long VP-1 probe. We propose that these tumors may be poorly differentiated carcinomas of pulmonary or thymic origin.
Collapse
Affiliation(s)
- M M Garner
- Northwest ZooPath, Monroe, WA 98272, USA.
| | | | | | | | | |
Collapse
|
23
|
Katoh H, Ohya K, Une Y, Yamaguchi T, Fukushi H. Molecular characterization of avian polyomavirus isolated from psittacine birds based on the whole genome sequence analysis. Vet Microbiol 2009; 138:69-77. [DOI: 10.1016/j.vetmic.2009.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/16/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
24
|
Li J, Liu Q, Müller H, Hobom G. Avian polyomavirus expression patterns of bicistronic late mRNAs. Virology 2009; 388:42-8. [DOI: 10.1016/j.virol.2009.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/02/2008] [Accepted: 02/06/2009] [Indexed: 11/30/2022]
|
25
|
Kou Z, Zhang Z, Chen S, Fan Z, Tang S, Zhao L, Li T. Molecular characterizations of avian polyomavirus isolated from budgerigar in China. Avian Dis 2008; 52:451-4. [PMID: 18939634 DOI: 10.1637/8223-012408-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Budgerigar fledgling disease is an acute viral infectious disease caused by avian polyomavirus (APV). In this study, 34 liver tissue samples of young, dead budgerigar with typical symptoms were collected in 2004. All the samples had positive polymerase chain reaction (PCR) test based on the VP1 specific primers. VP1 genes of these samples were sequenced and had high similarities to each other (99%-100%). A strain (HBYM02) was isolated and sequenced. As shown in the phylogenetic tree, there are two branches. One branch was composed by strains isolated from Passeriformes, and the other was composed only by one strain isolated from Falconiformes. The genome similarities between our isolate and other reported isolates were very high (> 99%), and the evolution distances in the phylogenetic tree were very short (< 0.005), which suggests that APV in China has the same genotype as those in other regions. The results will be useful for the diagnoses of, and vaccine development for, APV.
Collapse
Affiliation(s)
- Zheng Kou
- Department of System Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Johne R, Müller H. Polyomaviruses of birds: etiologic agents of inflammatory diseases in a tumor virus family. J Virol 2007; 81:11554-9. [PMID: 17715213 PMCID: PMC2168798 DOI: 10.1128/jvi.01178-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Reimar Johne
- Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| | | |
Collapse
|
27
|
Johne R, Paul G, Enderlein D, Stahl T, Grund C, Müller H. Avian polyomavirus mutants with deletions in the VP4-encoding region show deficiencies in capsid assembly and virus release, and have reduced infectivity in chicken. J Gen Virol 2007; 88:823-830. [PMID: 17325354 DOI: 10.1099/vir.0.82506-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian polyomavirus (APV) is the causative agent of an acute fatal disease in psittacine and some non-psittacine birds. In contrast to mammalian polyomaviruses, the APV genome encodes the additional capsid protein VP4 and its variant VP4Delta, truncated by an internal deletion. Both proteins induce apoptosis. Mutation of their common initiation codon prevents virus replication. Here, the generation of replication competent deletion mutants expressing either VP4 or VP4Delta is reported. In contrast to infection with wild-type virus, chicken embryo cells showed no cytopathic changes after infection with the mutants, and induction of apoptosis as well as virus release from the infected cells were delayed. Electron microscopy revealed the presence of a high proportion of small particles and tubules in preparations of the VP4 deletion mutant, indicating a scaffolding function for VP4. Wild-type and mutant viruses elicited neutralizing antibodies against APV after intramuscular and intraperitoneal infection of chicken; however, VP4-specific antibodies were only detected after infection with wild-type virus. Using the oculonasal route of infection, seroconversion was only observed in chickens infected with the wild-type virus, indicating a strongly reduced infectivity of the mutants. Based on the biological properties of the deletion mutants, they could be considered as candidates for APV marker vaccines.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Guntram Paul
- Intervet International, Wim de Körverstraat 35, 5830 AA Boxmeer, The Netherlands
| | - Dirk Enderlein
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | - Tobias Stahl
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Grund
- Institute for Avian Diseases, Ludwig Maximilians University Munich, Sonnenstraße 18, D-85764 Oberschleißheim, Germany
| | - Hermann Müller
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| |
Collapse
|
28
|
Hsu CM, Ko CY, Tsaia HJ. Detection and sequence analysis of avian polyomavirus and psittacine beak and feather disease virus from psittacine birds in Taiwan. Avian Dis 2006; 50:348-53. [PMID: 17039833 DOI: 10.1637/7485-121105r.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian polyomavirus (APV) and psittacine beak and feather disease virus (PBFDV) are the most common viral diseases of psittacine birds. In Taiwan, however, the existence of these viruses in psittacine birds has not been established. Polymerase chain reaction (PCR) methodology was therefore employed to ascertain whether APV and PBFDV genomes were present in isolates from psittacine birds of Taiwan. A total of 165 psittacine birds belonging to 22 genera were examined between 2002 and 2005. Findings revealed an APV-positive rate of 15.2%, a PBFDV-positive rate of 41.2%, and an APV/PBFDV dual infection rate of 10.3%. After cloning and sequencing, sequences of the PCR products were compared with sequences obtained from GenBank. For APV, the nucleotide identity among VP1 and t/T antigen coding regions ranged from 97.5% to 100% and 97.6% to 100%, respectively. For PBFDV, the nucleotide identity of ORF V1 and ORF C1 sequences ranged from 92.2% to 100% and 83.3% to 100%, respectively. The derived amino acid sequence alignment for PBFDV ORF V1 fragments revealed the conservation of two replication motifs and of the nucleotide binding site motif. In PBFDV, six of 42 deduced positions in the ORF C1 amino acid sequence were considered hypervariable. The established phylogenetic trees based on the four genome fragments examined in this study did not allow the assignment of particular APV or PBFDV nucleotide sequences to distinct avian species.
Collapse
Affiliation(s)
- Chih-Ming Hsu
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | | | | |
Collapse
|
29
|
Zielonka A, Gedvilaite A, Ulrich R, Lüschow D, Sasnauskas K, Müller H, Johne R. Generation of virus-like particles consisting of the major capsid protein VP1 of goose hemorrhagic polyomavirus and their application in serological tests. Virus Res 2006; 120:128-37. [PMID: 16780983 DOI: 10.1016/j.virusres.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
Goose hemorrhagic polyomavirus (GHPV) is the causative agent of hemorrhagic nephritis and enteritis of geese (HNEG), a fatal disease of young geese with high mortality rates. GHPV cannot be efficiently propagated in tissue culture. To provide antigens for diagnostic tests and vaccines, its major structural protein VP1 was recombinantly expressed in Sf9 insect cells and in the yeast Saccharomyces cerevisiae. As demonstrated by density gradient centrifugation and electron microscopy, GHPV-VP1 expressed in insect cells formed virus-like particles (VLPs) with a diameter of 45 nm indistinguishable from infectious polyomavirus particles. However, efficiency of VLP formation was low as compared to the monkey polyomavirus SV-40-VP1. In yeast cells, GHPV-VP1 alone formed smaller VLPs, 20 nm in diameter. Remarkably, co-expression of GHPV-VP2 resulted in VLPs with a diameter of 45 nm. All three types of GHPV-VLPs were shown to hemagglutinate chicken erythrocytes. ELISA and hemagglutination inhibition tests using the VLPs as antigen detected GHPV-specific antibodies in up to 85.7% of sera derived from flocks with HNEG but in none of the sera of a clinically healthy flock. However, GHPV-specific antibodies were also detected in sera from two other flocks without HNEG indicating a broad distribution of GHPV due to subclinical or unrecognised infections.
Collapse
Affiliation(s)
- Anja Zielonka
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Pérez-Losada M, Christensen RG, McClellan DA, Adams BJ, Viscidi RP, Demma JC, Crandall KA. Comparing phylogenetic codivergence between polyomaviruses and their hosts. J Virol 2006; 80:5663-9. [PMID: 16731904 PMCID: PMC1472594 DOI: 10.1128/jvi.00056-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022] Open
Abstract
Seventy-two full genomes corresponding to nine mammalian (67 strains) and two avian (5 strains) polyomavirus species were analyzed using maximum likelihood and Bayesian methods of phylogenetic inference. Our fully resolved and well-supported (bootstrap proportions > 90%; posterior probabilities = 1.0) trees separate the bird polyomaviruses (avian polyomavirus and goose hemorrhagic polyomavirus) from the mammalian polyomaviruses, which supports the idea of spitting the genus into two subgenera. Such a split is also consistent with the different viral life strategies of each group. Simian (simian virus 40, simian agent 12 [Sa12], and lymphotropic polyomavirus) and rodent (hamster polyomavirus, mouse polyomavirus, and murine pneumotropic polyomavirus [MPtV]) polyomaviruses did not form monophyletic groups. Using our best hypothesis of polyomavirus evolutionary relationships and established host phylogenies, we performed a cophylogenetic reconciliation analysis of codivergence. Our analyses generated six optimal cophylogenetic scenarios of coevolution, including 12 codivergence events (P < 0.01), suggesting that Polyomaviridae coevolved with their avian and mammal hosts. As individual lineages, our analyses showed evidence of host switching in four terminal branches leading to MPtV, bovine polyomavirus, Sa12, and BK virus, suggesting a combination of vertical and horizontal transfer in the evolutionary history of the polyomaviruses.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Literák I, Smíd B, Dubská L, Bryndza L, Valícek L. An outbreak of the polyomavirus infection in budgerigars and cockatiels in Slovakia, including a genome analysis of an avian polyomavirus isolate. Avian Dis 2006; 50:120-3. [PMID: 16617994 DOI: 10.1637/7395-061605r.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In winter 2003-04, large numbers of budgerigars (Mellopsitacus undulatus) and cockatiels (Nymphicus hollandicus) fell ill and died in a large parrot-breeding aviary in Slovakia. In budgerigars, the disease outbreak occurred at the age of 2-3 weeks; cockatiels died within their first 7 days of life. In budgerigars, symptoms of the disease included delayed growth, tremor, darkish discoloration of skin, quill bleeding, and feathering defects. cockatiels often died without any symptoms and with a full crop; feathering defects occurred sporadically. Electron microscopy with negative staining of aqueous lysates of the affected skin and of bleeding quills showed isolated or clustered polyomavirus particles 45-50 nm in size. Long filamentous forms of the virus were also found in virion clusters of skin lysates from the budgerigars. In ultrathin sections through the pathologically altered skin tissue of budgerigars, virus particles were present in both nuclei and cytoplasm of epidermal cells, often in crystalline form. In infected cells, enlarged nuclei showed an extensive chromatin margination. On the DNA level, presence of a polyomavirus infection was conclusively proved by the polymerase chain reaction using avian polyomavirus (APV)-specific primers. A sequence analysis of the gene encoding viral protein (VP)1 and of the combined region for VP2 and VP3 proteins revealed a previously undescribed synonymous mutation in this isolate. This report extended the knowledge of the area of APV occurrence and of the spectrum of hosts in the context of genomic and morphologic variability of APV isolates.
Collapse
Affiliation(s)
- Ivan Literák
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, 612 42 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
Raue R, Schmidt V, Freick M, Reinhardt B, Johne R, Kamphausen L, Kaleta EF, Müller H, Krautwald-Junghanns ME. A disease complex associated with pigeon circovirus infection, young pigeon disease syndrome. Avian Pathol 2006; 34:418-25. [PMID: 16236576 DOI: 10.1080/03079450500267825] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In order to collect more convincing data on the aetiological agent of young pigeon disease syndrome (YPDS), a comprehensive study was performed on pigeons in German lofts with or without outbreaks of YPDS. The investigations included examination of histories, clinical signs and pathology, as well as parasitological and microbiological analysis. Pigeons in their 4th to 12th week of life exhibited clinical signs at higher frequency and with greater severity than pigeons of other ages. Greenish liquid in the crop, proventriculus and ventriculus, and yellow fluid in the small intestine were seen more often in YPDS-affected pigeons. Escherichia coli and Klebsiella pneumoniae were isolated more frequently from these birds. Depletion of splenic and bursal lymphocytes was only seen in pigeons with YPDS. Inclusion bodies were present in various organs, especially the bursa of Fabricius. The genome of pigeon circovirus was detected in lymphoid tissues from all pigeons with YPDS. The results of this study indicate that YPDS is a multifactorial disease in which pigeon circovirus might be a crucial factor, possibly by inducing immunosuppression in infected birds.
Collapse
Affiliation(s)
- Rüdiger Raue
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Johne R, Wittig W, Fernández-de-Luco D, Höfle U, Müller H. Characterization of two novel polyomaviruses of birds by using multiply primed rolling-circle amplification of their genomes. J Virol 2006; 80:3523-31. [PMID: 16537620 PMCID: PMC1440385 DOI: 10.1128/jvi.80.7.3523-3531.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomaviruses are small nonenveloped particles with a circular double-stranded genome, approximately 5 kbp in size. The mammalian polyomaviruses mainly cause persistent subclinical infections in their natural nonimmunocompromised hosts. In contrast, the polyomaviruses of birds--avian polyomavirus (APV) and goose hemorrhagic polyomavirus (GHPV)--are the primary agents of acute and chronic disease with high mortality rates in young birds. Screening of field samples of diseased birds by consensus PCR revealed the presence of two novel polyomaviruses in the liver of an Eurasian bullfinch (Pyrrhula pyrrhula griseiventris) and in the spleen of a Eurasian jackdaw (Corvus monedula), tentatively designated as finch polyomavirus (FPyV) and crow polyomavirus (CPyV), respectively. The genomes of the viruses were amplified by using multiply primed rolling-circle amplification and cloned. Analysis of the FPyV and CPyV genome sequences revealed a close relationship to APV and GHPV, indicating the existence of a distinct avian group among the polyomaviruses. The main characteristics of this group are (i) involvement in fatal disease, (ii) the existence of an additional open reading frame in the 5' region of the late mRNAs, and (iii) a different manner of DNA binding of the large tumor antigen compared to that of the mammalian polyomaviruses.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
34
|
Ogawa H, Chahota R, Hagino T, Ohya K, Yamaguchi T, Fukushi H. A Survey of Avian Polyomavirus (APV) Infection in Imported and Domestic Bred Psittacine Birds in Japan. J Vet Med Sci 2006; 68:743-5. [PMID: 16891790 DOI: 10.1292/jvms.68.743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although birds infected with avian polyomavirus (APV) subclinically could be a source of infection, no epidemiological studies of APV in psittacine birds have been reported in Japan. In the present study, we investigated subclinical morbidity rate of APV in imported and domestically bred psittacine birds by polymerase chain reaction (PCR). Of 402 live birds from which blood or feather samples were taken between April, 2003 and March, 2004, 11 (2.7%) were found to be APV positive. The DNA sequences of the APV t/T antigen region were determined for five APV-positive randomly selected samples and were found to be conserved.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Ogawa H, Yamaguchi T, Fukushi H. Duplex shuttle PCR for differential diagnosis of budgerigar fledgling disease and psittacine beak and feather disease. Microbiol Immunol 2005; 49:227-37. [PMID: 15781996 DOI: 10.1111/j.1348-0421.2005.tb03724.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two common viral diseases in psittacine birds including budgerigar fledgling disease (BFD), generally called avian polyomavirus (APV) infection, and psittacine beak and feather disease (PBFD) have similar clinical manifestations characterized by feather disorders. A duplex shuttle PCR was developed for detection of APV and PBFD virus (PBFDV). Two pairs of oligonucleotide primers were designed to amplify a 298-bp fragment of the t/T antigen region of APV genome and a 495-bp fragment of the capsid protein region encoded by open reading frame (ORF) C1 of PBFDV genome, respectively. In the present study, APV and PBFDV were detected simultaneously in one tube by duplex shuttle PCR using these two pairs of primers. The detection limits were 2 viral copies of APV and 3 viral copies of PBFDV. In the clinical application, we detected 16 APV-positive, 15 PBFDV-positive, and 3 mixed infected samples in 39 samples examined. Sequences of the amplified products were read. The t/T antigen region was conserved in the APV-positive samples as expected. ORF C1 of PBFDV genome showed diversity. Phylogenic analysis indicated that PBFDV ORF C1 consisted of 6 clusters which were related to subfamilies of psittacine birds. Our duplex shuttle PCR could be a useful method for differential diagnosis and molecular epidemiology of BFD and PBFD.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | |
Collapse
|
36
|
Johne R, Enderlein D, Nieper H, Müller H. Novel polyomavirus detected in the feces of a chimpanzee by nested broad-spectrum PCR. J Virol 2005; 79:3883-7. [PMID: 15731285 PMCID: PMC1075742 DOI: 10.1128/jvi.79.6.3883-3887.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to screen for new polyomaviruses in samples derived from various animal species, degenerated PCR primer pairs were constructed. By using a nested PCR protocol, the sensitive detection of nine different polyomavirus genomes was demonstrated. The screening of field samples revealed the presence of a new polyomavirus, tentatively designated chimpanzee polyomavirus (ChPyV), in the feces of a juvenile chimpanzee (Pan troglodytes). Analysis of the region encoding the major capsid protein VP1 revealed a unique insertion in the EF loop of the protein and showed that ChPyV is a distinct virus related to the monkey polyomavirus B-lymphotropic polyomavirus and the human polyomavirus JC polyomavirus.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
37
|
Rahaus M, Wolff MH. A survey to detect subclinical polyomavirus infections of captive psittacine birds in Germany. Vet Microbiol 2005; 105:73-6. [PMID: 15607086 DOI: 10.1016/j.vetmic.2004.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 08/24/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Infections of avian polyomavirus (APV) are known to cause fatal disease in a wide range of psittacine and non-psittacine birds. Here, we present a survey to investigate the existence of subpopulation of persistent or subclinically infected parrots inside the population of captive psittacine birds in Germany. DNA was isolated from feathers of 85 symptom-free birds from 20 different genera (all psittaciformes) taken from 30 different breeders from all over Germany. The presence of APV was analysed by performing polymerase chain reaction assays (PCR). APV was detected in none of the samples, indicating that the existence of a subpopulation of captive psittacine birds having a persistent APV infection in Germany seems to be relatively low.
Collapse
Affiliation(s)
- Markus Rahaus
- Institute of Microbiology and Virology, University of Witten/Herdecke, Stockumer Street 10, D-58448 Witten, Germany.
| | | |
Collapse
|
38
|
Johne R, Raue R, Grund C, Kaleta EF, Müller H. Recombinant expression of a truncated capsid protein of beak and feather disease virus and its application in serological tests. Avian Pathol 2004; 33:328-36. [PMID: 15223562 DOI: 10.1080/0307945042000220589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Beak and feather disease virus (BFDV) causes severe disease characterized by irreversible feather disorders and severe immunosuppression in many psittacine species. BFDV cannot be propagated in tissue or cell cultures, rendering virus propagation and thus diagnosis rather difficult. To develop reliable diagnostic methods, the region encoding the BFDV capsid protein C1 was cloned from an infected sulphur-crested cockatoo (Cacatua galerita). Phylogenetic analysis showed this gene had 76.3 to 83.2% amino acid identity to published sequences. No protein was detected after induction of full-length C1 expression in Escherichia coli. However, deletion of an amino-terminal arginine-rich sequence facilitated expression. C1(39-244)-His, a polyhistidine-tailed variant of this protein, was purified and used for immunization of chickens. The immune sera detected C1 with an apparent molecular weight of 27 kDa in western blots of organ homogenates of BFDV-infected birds. Using C1(39-244)-His as antigen, 11 psittacine sera were tested for the presence of BFDV-specific antibodies by enzyme-linked immunosorbent assay and immunoblotting. The results obtained correlated well with the BFDV-specific haemagglutination inhibition activity of the sera, suggesting C1(39-244)-His has value as a recombinant antigen for BFDV-specific serological tests.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
39
|
Roy P, Dhillon AS, Lauerman L, Shivaprasad HL. Detection of avian polyomavirus infection by polymerase chain reaction using formalin-fixed, paraffin-embedded tissues. Avian Dis 2004; 48:400-4. [PMID: 15283428 DOI: 10.1637/7117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian polyomavirus infection in psittacines was diagnosed in tissues by the use of polymerase chain reaction (PCR) test. The tissues used in the procedure were either formalin-fixed tissues embedded in paraffin blocks or fresh tissues (heart, liver, and spleen) collected from the psittacines during necropsy. DNA was extracted from these tissues and was tested with the published primers for avian polyomavirus VP1 gene in the PCR that yielded an amplicon of 550 base pair size, which was then visualized by electrophoresis. The amplicon size was consistent with avian polyomavirus. The PCR test was found to be an effective method for identifying avian polyomavirus infection in both formalin-fixed, paraffin-embedded and fresh tissues from psittacine birds of different age groups.
Collapse
Affiliation(s)
- Parimal Roy
- Avian Health and Food Safety Laboratory, Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, 7613 Pioneer Way East, Puyallup, WA 98371, USA
| | | | | | | |
Collapse
|
40
|
Johne R, Müller H. Nuclear localization of avian polyomavirus structural protein VP1 is a prerequisite for the formation of virus-like particles. J Virol 2004; 78:930-7. [PMID: 14694124 PMCID: PMC368749 DOI: 10.1128/jvi.78.2.930-937.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, D-04103 Leipzig, Germany.
| | | |
Collapse
|
41
|
Johne R, Müller H. The genome of goose hemorrhagic polyomavirus, a new member of the proposed subgenus Avipolyomavirus. Virology 2003; 308:291-302. [PMID: 12706079 DOI: 10.1016/s0042-6822(02)00103-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The full-length genome of goose hemorrhagic polyomavirus (GHPV), the ethiologic agent of hemorrhagic nephritis and enteritis of geese, was cloned and sequenced. Transfection of the circular ds DNA with a size of 5256 bp and an organisation typical of polyomaviruses produced viral progeny in cultured goose cells. According to the splicing sites determined by RT-PCR, five open reading frames (ORFs) were found to encode putative proteins with significant similarities to large T antigen and small t antigen as well as VP1, VP2, and VP3 of other polyomaviruses. An additional ORF located in the 5' region of late mRNA, with a coding capacity for 169 amino acids, shows a low degree of homology to VP4 of avian polyomavirus (APV). The alignment of nucleotide sequences and amino acid sequences revealed a relatively close relationship between GHPV and APV. Therefore, grouping of this new polyomavirus into the proposed subgenus Avipolyomavirus is suggested.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
42
|
Herrera I, Khan SR, Kaleta EF, Müller H, Dolz G, Neumann U. Serological status for Chlamydophila psittaci, Newcastle disease virus, avian polyoma virus, and Pacheco disease virus in scarlet macaws (Ara macao) kept in captivity in Costa Rica. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2001; 48:721-6. [PMID: 11846016 DOI: 10.1046/j.1439-0450.2001.00485.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From 1998 to 1999, a total of 128 blood samples were collected from scarlet macaws (Ara macao), kept in captivity in 11 different aviaries located in six provinces of Costa Rica. The sera were examined for antibodies directed against Chlamydophila psittaci, Newcastle disease virus (NDV), avian polyoma virus (APV), and Pacheco disease virus (PDV). Testing by enzyme-linked immunosorbent assay (ELISA), showed 16 (12.39%) of the samples (n = 129) exhibited antibodies directed against C. psittaci. Employing haemagglutination inhibition tests for NDV antibodies, all of the samples were found to be negative. The prevalence of antibodies specific for APV was tested with a blocking ELISA and serum neutralization tests (SNT) and 12 of 128 samples (9.37%) were found to be positive with both tests. In SNT, two out of 128 samples (1.56%) were positive for PDV. This is the first description of the serological status in scarlet macaws in captivity in Costa Rica. The study demonstrates the absence of NDV antibodies in the birds investigated on one hand, but also indicates a health hazard for numerous avian species due to the risk of infections with C. psittaci, APV or PDV.
Collapse
Affiliation(s)
- I Herrera
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | | | | | | | | | | |
Collapse
|
43
|
Johne R, Müller H. Avian polyomavirus agnoprotein 1a is incorporated into the virus particle as a fourth structural protein, VP4. J Gen Virol 2001; 82:909-918. [PMID: 11257197 DOI: 10.1099/0022-1317-82-4-909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agnoproteins, encoded by the 5'-region of the late bicistronic mRNA of some polyomaviruses, are small proteins with largely unknown functions. In avian polyomavirus (APV)-infected cells, mRNAs of seven putative agnoproteins have been observed. Recently, it has been shown that agnoprotein 1a and its truncated variant agnoprotein 1b, encoded by the predominant mRNA species, are essential for APV replication. Here, the presence of agnoprotein 1a is demonstrated in the nucleus of APV-infected cells and in purified APV particles. Interaction between agnoprotein 1a and the major structural protein, VP1, was demonstrated by co-immunoprecipitation experiments using lysates of recombinant baculovirus-infected insect cells. With proteins expressed in E. coli, binding to double-stranded DNA in a sequence-unspecific manner was shown for agnoprotein 1a, whereas agnoprotein 1b failed to bind. A leucine zipper-like motif present in agnoprotein 1a is considered to be involved in DNA binding. Due to the absence of any structural or functional homologies between APV agnoprotein 1a and the agnoproteins of mammalian polyomaviruses, it is suggested that this protein should be renamed VP4, indicating its function as a fourth structural protein of APV.
Collapse
Affiliation(s)
- Reimar Johne
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany1
| | - Hermann Müller
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany1
| |
Collapse
|
44
|
Khan MS, Johne R, Beck I, Pawlita M, Kaleta EF, Müller H. Development of a blocking enzyme-linked immunosorbent assay for the detection of avian polyomavirus-specific antibodies. J Virol Methods 2000; 89:39-48. [PMID: 10996638 DOI: 10.1016/s0166-0934(00)00197-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Avian polyomavirus, described originally as budgerigar fledgling disease virus, has been associated with devastating contagious disease outbreaks in budgerigar aviaries. At present, this virus affects a wide range of psittacine and non-psittacine birds worldwide, and the serum neutralisation test is used for the serodiagnosis of avian polyomavirus infections. A blocking enzyme-linked immunosorbent assay was developed for the screening of large numbers of sera collected from various avian species. The assay employs a monoclonal antibody directed against the major structural protein VP1 as a blocking antibody in a sandwich blocking procedure. Either purified avian polyomavirus particles or avian polyomavirus VP1 expressed in recombinant baculovirus-infected Sf9 cells were used as antigen. The specificity of the blocking enzyme-linked immunosorbent assay was evaluated by testing sera directed against mammalian polyomaviruses. Using sera obtained from chicken infected experimentally with avian polyomavirus and a collection of psittacine field-origin sera, a good correlation was observed between the results of the blocking enzyme-linked immunosorbent assay and the serum neutralisation test. However, the blocking enzyme-linked immunosorbent assay is more rapid and more economic. Both, avian polyomavirus particles and VP1 produced by recombinant DNA technology proved to be suitable antigens.
Collapse
Affiliation(s)
- M S Khan
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Johne R, Jungmann A, Müller H. Agnoprotein 1a and agnoprotein 1b of avian polyomavirus are apoptotic inducers. J Gen Virol 2000; 81:1183-90. [PMID: 10769059 DOI: 10.1099/0022-1317-81-5-1183] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian polyomavirus (APV) causes an acute fatal disease in a variety of avian species. DNA laddering indicating apoptosis was demonstrated in APV-infected chicken embryo (CE) cells. DNA laddering, however, was not observed in Vero cells infected with mammalian polyomavirus simian virus 40. Expression of APV agnoprotein 1a and agnoprotein 1b induced apoptosis in insect cells and CE cells. An APV full-length plasmid transfected in CE cells induced apoptosis, and infectious virus was produced. After transfection of CE cells with a plasmid containing a mutated initiation codon for agnoprotein 1a and agnoprotein 1b, however, a considerably lower number of apoptotic cells was observed, and no infectious progeny was produced.
Collapse
Affiliation(s)
- R Johne
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
46
|
Guerin JL, Gelfi J, Dubois L, Vuillaume A, Boucraut-Baralon C, Pingret JL. A novel polyomavirus (goose hemorrhagic polyomavirus) is the agent of hemorrhagic nephritis enteritis of geese. J Virol 2000; 74:4523-9. [PMID: 10775588 PMCID: PMC111972 DOI: 10.1128/jvi.74.10.4523-4529.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified the etiological agent of hemorrhagic nephritis enteritis of geese (HNEG), a fatal disease of European geese. HNEG has been recognized in almost all goose breeding areas, with an epizootic pattern, and up to now, the infectious agent has remained unknown. In order to identify the causative agent, infected tissues from HNEG-affected geese were inoculated to 1-day-old goslings, which then developed clinical signs typical of HNEG. Tissue homogenates from these birds were subjected to Freon extraction followed by sucrose density gradient ultracentrifugation. The resulting main band was examined by electron microscopy and consisted of spherical, naked, papovavirus-like particles approximately 45 nm in diameter. The virus was isolated and propagated in goose kidney cell primary culture. Tissue- or culture-purified virus allowed the experimental reproduction of the disease in goslings. Random PCR amplification of viral nucleic acid produced a 1,175-bp fragment which was shown to be associated with field samples collected from geese affected by HNEG on commercial farms in France. Sequence analysis of the PCR product revealed a unique open reading frame, showing 63 to 72% amino acid similarity with the major capsid protein (VP1) of several polyomaviruses. Finally, based on phylogenetic analysis, we conclude that the causative agent of HNEG is closely related to but clearly distinct from other polyomaviruses; we thus have named this newly identified virus Goose hemorrhagic polyomavirus.
Collapse
Affiliation(s)
- J L Guerin
- Unité Mixte de Recherche de Microbiologie Moléculaire, INRA/ENVT, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
47
|
Liu Q, Hobom G. Agnoprotein-1a of avian polyomavirus budgerigar fledgling disease virus: identification of phosphorylation sites and functional importance in the virus life-cycle. J Gen Virol 2000; 81:359-67. [PMID: 10644834 DOI: 10.1099/0022-1317-81-2-359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The avian polyomavirus budgerigar fledgling disease virus (BFDV) encodes an unusual set of four agnoproteins in its late upstream region. Of the two pairs of these proteins, which overlap each other in two different reading frames, the p(L1)-promoted agnoprotein-1a (agno-1a) is the dominant species and is able to support virus propagation in the absence of the other three polypeptides. Viral BFDV agno-1a, and also agno-1a expressed via an influenza virus vector, consists of a complex series of electrophoretically separable subspecies that can be reduced by phosphatase action down to a primary unphosphorylated protein with an apparent molecular mass of 31 kDa. Through peptide mass spectrometry and site-directed mutagenesis, the positions of four serine and three threonine residues have been determined as phosphate-accepting groups, which are partially modified by the combined action of three different cellular kinases. Since extensively phosphorylated agno-1a is required for its intracellular function, control over VP protein expression, and unphosphorylated agno-1a is observed as an additional component in the BFDV virion, both extreme subspecies appear to be drawn from that complex mixture, which also includes the intermediate stages of phosphorylation.
Collapse
Affiliation(s)
- Q Liu
- Institut für Mikrobiologie und Molekularbiologie der Universität Giessen, Frankfurter Str. 107, 35392 Giessen, Germany
| | | |
Collapse
|
48
|
RITCHIE BW, GREGORY CR, LATIMER KS, PESTI D, CAMPAGNOLI R, LUKERT PD. A review of the most common viruses affecting Psittaciformes. ACTA ACUST UNITED AC 2000. [DOI: 10.1111/j.1748-1090.2000.tb00731.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Liu Q, Hobom G. Recombinant expression of late genes agno-2a and agno-2b of avian polyomavirus BFDV. Virus Genes 1999; 19:183-7. [PMID: 10595409 DOI: 10.1023/a:1008180529157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Budgerigar fledgling disease virus (BFDV) genome contains two times two (two pairs) open reading frames (agnogenes) at the 5' end of the late coding region. Recombinant influenza A viruses were constructed to express the second pair of BFDV agnoproteins, agno-2a and agno-2b, with a fusion of a histidine-tag at their carboxy-termini, respectively. Specific proteins were detected in Western blot analysis using anti histidine-tag monoclonal antibody. By indirect immunofluorescence experiments agno-2a and agno-2b were shown to be located on the surface and in the perinuclear and cytoplasmic areas of infected cells. Comparisons of the expression patterns of BFDV agno-2a and agno-2b with that of simian virus 40 agnoprotein reveal high similarity, suggesting that they might have the same function(s) in polyomavirus infectious cycle.
Collapse
Affiliation(s)
- Q Liu
- Institute of Microbiology and Molecular Biology, University of Giessen, Germany.
| | | |
Collapse
|
50
|
An K, Smiley SA, Gillock ET, Reeves WM, Consigli RA. Avian polyomavirus major capsid protein VP1 interacts with the minor capsid proteins and is transported into the cell nucleus but does not assemble into capsid-like particles when expressed in the baculovirus system. Virus Res 1999; 64:173-85. [PMID: 10518713 DOI: 10.1016/s0168-1702(99)00093-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The baculovirus system was used to construct and isolate AcMNPV-VP1, AcMNPV-VP2 and AcMNPV-VP3 recombinant viruses which express the respective avian polyomavirus (APV) structural proteins in Sf9 insect cells. These recombinant AcMNPVs containing APV structural protein genes were utilized to investigate protein-protein interactions between the structural proteins. Immunofluorescence studies utilizing Sf9 cells infected with the AcMNPV-VP1 revealed that the VP1 protein was expressed and localized in the cytoplasm and not transported into the nucleus. When the cells were co-infected with the VP1 and either VP2 or VP3 recombinant viruses, immunofluorescence of the VP1 protein was localized in the nucleus, indicating that the VP1 protein was transported to the nucleus by both the VP2 and VP3 minor proteins. This observation was suggestive of a protein-protein interaction between the expressed proteins. This protein-protein interaction was substantiated by laser scanning confocal microscopy of Sf9 cells that were co-infected with VP1, VP2 and VP3 recombinant viruses. However, the minor proteins could not be co-isolated with VP1 protein by immunoaffinity chromatography using a monoclonal anti-VP1 serum. In addition, capsid-like particles could not be purified either by CsC1 density gradient centrifugation or by immunoaffinity chromatography. VP1 capsomeres were isolated by immunoaffinity chromatography from Sf9 cells infected with AcMNPV-VP1, with or without the minor protein(s), and these capsomeres could assemble in vitro into capsid-like particles. Electron microscopic observation of thin-sectioned Sf9 cells, which were co-infected with VP1, VP2 and VP3 recombinant viruses, demonstrated capsomere-like structures in the nucleus, but capsid-like particles were not observed.
Collapse
Affiliation(s)
- K An
- Division of Biology-Ackert Hall, Section of Virology and Oncology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|