1
|
DA SILVA DG, de CARVALHO ILQ, TOSCANO ECDB, SANTOS BÁDSS, OLIVEIRA BDS, CAMPOS MA, da FONSECA FG, CAMARGOS QM, de SOUSA GF, CALIARI MV, TEIXEIRA AL, de MIRANDA AS, RACHID MA. Brain-derived neurotrophic factor is down regulated after bovine alpha-herpesvirus 5 infection in both wild-type and TLR3/7/9 deficient mice. J Vet Med Sci 2021; 83:180-186. [PMID: 33281142 PMCID: PMC7972877 DOI: 10.1292/jvms.20-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotrophic factors have been implicated in the control of neuronal survival and plasticity in different brain diseases. Meningoencephalitis caused by bovine alpha-herpesvirus 5 (BoHV-5) infection is a frequent neurological disease of young cattle, being the involvement of apoptosis in the development of neuropathological changes frequently discussed in the literature. It's well known that Toll-like receptors (TLRs) can activate neuroinflammatory response and consequently lead to neuronal loss. However, there are no studies evaluating the expression of neurotrophic factors and their association with brain pathology and TLRs during the infection by BoHV-5. The current study aimed to analyze brain levels of neurotrophic factors along with neuropathological changes during acute infection by BoHV-5 in wild-type (WT) and TLR3/7/9 (TLR3/7/9-/-) deficiency mice. The infection was induced by intracranial inoculation of 1 × 104 TCID50 of BoHV-5. Infected animals presented similar degrees of clinical signs and neuropathological changes. Both infected groups had meningoencephalitis and neuronal damage in CA regions from hippocampus. BoHV-5 infection promoted the proliferation of Iba-1 positive cells throughout the neuropil, mainly located in the frontal cortex. Moreover, significant lower levels of brain-derived neurotrophic factor (BDNF) were detected in both BoHV-5 infected WT and TLR3/7/9 deficient mice, compared with non-infected animals. Our study showed that BDNF down regulation was associated with brain inflammation, reactive microgliosis and neuronal loss after bovine alpha-herpesvirus 5 infection in mice. Moreover, we demonstrated that combined TLR3/7/9 deficiency does not alter those parameters.
Collapse
Affiliation(s)
- Daniele Gonçalves DA SILVA
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Iracema Luisa Quintino de CARVALHO
- Department of Microbiology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Eliana Cristina de Brito TOSCANO
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Beatriz Álvares da Silva Senra SANTOS
- Laboratory of Animal Virology, Department of Preventive
Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo
Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruna da Silva OLIVEIRA
- Department of Morphology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marco Antônio CAMPOS
- René Rachou Institute, Fiocruz Minas, Belo Horizonte, Minas
Gerais, 30190-002, Brazil
| | - Flávio Guimarães da FONSECA
- Department of Microbiology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Quezya Mendes CAMARGOS
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Gabriela Ferreira de SOUSA
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Vidigal CALIARI
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Antônio Lúcio TEIXEIRA
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, School of Medicine, University of Texas Health Science Center at
Houston, TX, 77054, USA
| | - Aline Silva de MIRANDA
- Department of Morphology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Milene Alvarenga RACHID
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
2
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|
3
|
Brum M, Weiblen R, Flores E, Chowdhury S. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both. Braz J Med Biol Res 2010; 43:217-24. [DOI: 10.1590/s0100-879x2009007500008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/23/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - R. Weiblen
- Universidade Federal de Santa Maria, Brasil
| | | | | |
Collapse
|
4
|
Andrade G, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS. Design of novel hybrid organic–inorganic nanostructured biomaterials for immunoassay applications. Biomed Mater 2006; 1:221-34. [DOI: 10.1088/1748-6041/1/4/008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
HAN XJ, WANG JW, MA B. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60067-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Del Médico Zajac MP, Puntel M, Zamorano PI, Sadir AM, Romera SA. BHV-1 vaccine induces cross-protection against BHV-5 disease in cattle. Res Vet Sci 2006; 81:327-34. [PMID: 16540133 DOI: 10.1016/j.rvsc.2006.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/10/2006] [Accepted: 01/26/2006] [Indexed: 11/16/2022]
Abstract
Protection against BHV-5 disease induced by inactivated BHV-1 or BHV-5 based vaccines was analysed. Two groups of calves were subcutaneously immunized with an inactivated BHV-1 or BHV-5 based vaccine. A third group was not vaccinated and used as control. In the post-vaccination period, we studied the humoral and cellular immune response resulting similar to both groups. The efficacy of the vaccines was tested after intranasal challenge of the calves with a virulent Argentinean BHV-5 isolate (A-663). All control animals developed neurological signs associated with BHV-5 infection and high levels of virus shedding. Calves immunized with the BHV-1 and BHV-5 inactivated vaccines were protected against BHV-5 disease. Our study provides evidence that strongly support the existence of cross-protection between BHV-1 and BHV-5 in calves. Even though this has already been suggested by previous works, this is the first time an exhaustive study of the immune response is performed and typical clinical BHV-5 meningoencephalitis signs are reproduced in an experimental BHV-5 challenge trial.
Collapse
Affiliation(s)
- M P Del Médico Zajac
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología, Agropecuaria (INTA), Castelar, CC77, 1708 Morón, Argentina.
| | | | | | | | | |
Collapse
|
7
|
Delhon G, Moraes MP, Lu Z, Afonso CL, Flores EF, Weiblen R, Kutish GF, Rock DL. Genome of bovine herpesvirus 5. J Virol 2003; 77:10339-47. [PMID: 12970418 PMCID: PMC228503 DOI: 10.1128/jvi.77.19.10339-10347.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Accepted: 07/02/2003] [Indexed: 11/20/2022] Open
Abstract
Here we present the complete genomic sequence of bovine herpesvirus 5 (BHV-5), an alphaherpesvirus responsible for fatal meningoencephalitis in cattle. The 138390-bp genome encodes 70 putative proteins and resembles the alpha2 subgroup of herpesviruses in genomic organization and gene content. BHV-5 is very similar to BHV-1, the etiological agent of infectious bovine rhinotracheitis, as reflected by the high level of amino acid identity in their protein repertoires (average, 82%). The highest similarity to BHV-1 products (>or=95% amino acid identity) is found in proteins involved in viral DNA replication and processing (UL5, UL15, UL29, and UL39) and in virion proteins (UL14, UL19, UL48, and US6). Among the least conserved (
Collapse
Affiliation(s)
- G Delhon
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pasieka TJ, Maresova L, Grose C. A functional YNKI motif in the short cytoplasmic tail of varicella-zoster virus glycoprotein gH mediates clathrin-dependent and antibody-independent endocytosis. J Virol 2003; 77:4191-204. [PMID: 12634377 PMCID: PMC150655 DOI: 10.1128/jvi.77.7.4191-4204.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.
Collapse
|
9
|
Spilki FR, Esteves PA, Franco AC, Lima M, Holz CL, Batista HBR, Driemeier D, Flores EF, Weiblen R, Roehe PM. Neurovirulência e neuroinvasividade de herpesvírus bovinos tipos 1 e 5 em coelhos. PESQUISA VETERINARIA BRASILEIRA 2002. [DOI: 10.1590/s0100-736x2002000200005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Com o objetivo de avaliar a capacidade dos herpesvírus bovinos tipos 1 e 5 (BHV-1 e BHV-5) de invadir e replicar no sistema nervoso central (SNC) (neuroinvasividade), bem como sua capacidade de induzir doença neurológica (neurovirulência), coelhos com 30 a 35 dias de idade foram inoculados com uma amostra do Herpesvírus da Encefalite Bovina (BHV-5; amostra EVI 88/95) ou com amostras de BHV-1 (Los Angeles ou Cooper), pelas vias intratecal (IT) e intranasal (IN). A inoculação da amostra de BHV-5, tanto pela via IT como IN, induziu sinais clínicos neurológicos em 100% (12/12) dos coelhos inoculados. Os exames histopatológicos revelaram um quadro de meningoencefalite não-purulenta multifocal, caracterizada por gliose multifocal e infiltrados perivasculares. O vírus foi isolado de várias áreas do SNC desses animais. As amostras de BHV-1, quando inoculadas pela via IT, não foram neurovirulentas. A amostra Los Angeles de BHV-1, quando administrada pela via IN, induziu sinais respiratórios severos, além de sinais neurológicos em 57% (4/7) dos animais inoculados. Entretanto, o exame histopatológico destes quatro animais revelou vasculite e trombose no pulmão e cérebro, este último apresentando focos de necrose neuronal, porém sem lesões indicativas de encefalite. Isso sugere que os sinais neurológicos foram, provavelmente, conseqüentes a prejuízos no fluxo sangüíneo encefálico, e não a danos neuronais provocados pela inoculação desse vírus. A amostra Cooper de BHV-1, quando inoculada pela via IN, induziu apenas sinais leves de infecção respiratória. Estes resultados indicam que apenas a amostra de BHV-5 foi capaz de invadir e replicar no encéfalo dos coelhos quando inoculada tanto por via IN como IT, apresentando neuroinvasividade e neurovirulência. É possível que estas observações tenham relação com o fato de amostras de BHV-5 freqüentemente causarem encefalites, em contraposição a infecções pelo BHV-1, onde encefalites são raramente observadas.
Collapse
Affiliation(s)
| | | | - Ana Cláudia Franco
- Centro de Pesquisas Veterinárias Desidério Finamor, Brazil; Universidade Luterana do Brasil
| | - M. Lima
- Centro de Pesquisas Veterinárias Desidério Finamor, Brazil; UFSM
| | - Carine L. Holz
- Centro de Pesquisas Veterinárias Desidério Finamor, Brazil
| | | | | | | | | | - Paulo M. Roehe
- Centro de Pesquisas Veterinárias Desidério Finamor, Brazil; UFRGS
| |
Collapse
|
10
|
Gillette K, Misra V, Bratanich A. Sequence analysis of the alpha trans-inducing factor of bovine herpesvirus type 5 (BHV-5). Virus Genes 2002; 24:149-52. [PMID: 12018705 DOI: 10.1023/a:1014520616362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine herpesvirus (BHV), a member of the subfamily Alphaherpesvirinae, is classified into neurovirulent and non-neurovirulent subtypes on a basis of differential neuropathogenicities. Transcription of viral immediate early (IE) genes during alphaherpesvirus gene expression, is mediated by a multi-component immediate early complex (IEC) integrated by the viral tegument protein alpha trans-inducing factor (alpha-tif), a host cell protein (HCF), and a host Octamer protein (Oct). In this paper, we present a sequence analysis of the alpha-tif of the encephalitic BHV subtype, bovine herpesvirus type 5 (BHV-5). Bovine herpesvirus type 1 (BHV-1) and BHV-5 alpha-tifs share 98% amino acid sequence homology. However, BHV-5 alpha-tif is 23 residues shorter at the amino terminus than BHV-1 alpha-tif. Amino acid alignment of the alpha-tifs of BHV-1 and BHV-5 with other alphaherpesviruses indicates areas of conserved motifs but also important differences located mainly at the amino and carboxyl termini.
Collapse
Affiliation(s)
- Karin Gillette
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo 58105, USA.
| | | | | |
Collapse
|