1
|
Ibrahim YM, Zhang W, Wang X, Werid GM, Fu L, Yu H, Wang Y. Molecular characterization and pathogenicity evaluation of enterovirus G isolated from diarrheic piglets. Microbiol Spectr 2023; 11:e0264323. [PMID: 37830808 PMCID: PMC10715025 DOI: 10.1128/spectrum.02643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Enterovirus G is a species of positive-sense single-stranded RNA viruses associated with several mammalian diseases. The porcine enterovirus strains isolated here were chimeric viruses with the PLCP gene of porcine torovirus, which grouped together with global EV-G1 strains. The isolated EV-G strain could infect various cell types from different species, suggesting its potential cross-species infection risk. Animal experiment showed the pathogenic ability of the isolated EV-G to piglets. Additionally, the EV-Gs were widely distributed in the swine herds. Our findings suggest that EV-G may have evolved a novel mechanism for broad tropism, which has important implications for disease control and prevention.
Collapse
Affiliation(s)
- Yassein M. Ibrahim
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gebremeskel Mamu Werid
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
2
|
Chang X, Lin Q, Zhang Q, Hu J, Tursun G, Deng Y, Guo C, Wang X. Molecular Analysis of Caprine Enterovirus Circulating in China during 2016–2021: Evolutionary Significance. Viruses 2022; 14:v14051051. [PMID: 35632794 PMCID: PMC9143109 DOI: 10.3390/v14051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Here, we report the characterization of 13 novel caprine/ovine enterovirus strains isolated from different regions in China during 2016–2021. Immunoperoxidase monolayer assay showed that these viral strains shared strong cross-reaction with the previously reported caprine enterovirus CEV-JL14. Alignment analysis of the complete nucleotide sequences revealed 79.2%–87.8% and 75.0%–76.7% sequence identity of these novel caprine enterovirus strains to CEV-JL14 and TB4-OEV, respectively. Phylogenetic analyses clustered these novel strains to EV-G based on the amino acid sequences of P1 and 2C+3CD. Moreover, phylogenetic analysis of these caprine enterovirus strains identified three new EV-G types using VP1 sequences. These results demonstrate the genetic variations and the evolution of caprine enterovirus.
Collapse
|
3
|
Wang Y, Zhang W, Liu Z, Fu X, Yuan J, Zhao J, Lin Y, Shen Q, Wang X, Deng X, Delwart E, Shan T, Yang S. Full-length and defective enterovirus G genomes with distinct torovirus protease insertions are highly prevalent on a Chinese pig farm. Arch Virol 2018; 163:2471-2476. [PMID: 29786119 DOI: 10.1007/s00705-018-3875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Recombination occurs frequently between enteroviruses (EVs) which are classified within the same species of the Picornaviridae family. Here, using viral metagenomics, the genomes of two recombinant EV-Gs (strains EVG 01/NC_CHI/2014 and EVG 02/NC_CHI/2014) found in the feces of pigs from a swine farm in China are described. The two strains are characterized by distinct insertion of a papain-like protease gene from toroviruses classified within the Coronaviridae family. According to recent reports the site of the torovirus protease insertion was located at the 2C/3A junction region in EVG 02/NC_CHI/2014. For the other variant EVG 01/NC_CHI/2014, the inserted protease sequence replaced the entire viral capsid protein region up to the VP1/2A junction. These two EV-G strains were highly prevalent in the same pig farm with all animals shedding the full-length genome (EVG 02/NC_CHI/2014) while 65% also shed the capsid deletion mutant (EVG 01/NC_CHI/2014). A helper-defective virus relationship between the two co-circulating EV-G recombinants is hypothesized.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhijian Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xingli Fu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiaqi Yuan
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jieji Zhao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yuan Lin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750000, Ningxia, People's Republic of China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 200240, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Bunke J, Receveur K, Oeser AC, Fickenscher H, Zell R, Krumbholz A. High genetic diversity of porcine enterovirus G in Schleswig-Holstein, Germany. Arch Virol 2017; 163:489-493. [PMID: 29081014 DOI: 10.1007/s00705-017-3612-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Between 2012 and 2015, 495 pooled snout swabs from fattening pigs raised in Schleswig-Holstein, Germany, were screened for the presence of enterovirus G (EV-G) RNA. Nucleic acids were tested in diverse reverse transcription polymerase chain reaction assays applying published oligonucleotide primers specific for the viral protein (VP) 1 and 2/4 encoding regions as well as for 3D polymerase. Phylogenetic analyses of VP1 revealed the presence of 12 EV-G types, three of which had highly divergent sequences suggesting putative new types. Co-circulation of EV-G types was observed in several pigsties. Thus, genetic diversity of EV-G was demonstrated in this small geographic area.
Collapse
Affiliation(s)
- Jennifer Bunke
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Kerstin Receveur
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Ann Christin Oeser
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Roland Zell
- Sektion für Experimentelle Virologie, Institut für Medizinische Mikrobiologie, Friedrich Schiller Universität Jena und Universitätsklinikum Jena, Hans-Knöll-Straße 2, 07743, Jena, Germany
| | - Andi Krumbholz
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany.
| |
Collapse
|
5
|
Prostova MA, Deviatkin AA, Tcelykh IO, Lukashev AN, Gmyl AP. Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C. PeerJ 2017; 5:e3896. [PMID: 29018627 PMCID: PMC5633025 DOI: 10.7717/peerj.3896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022] Open
Abstract
Background Enteroviruses are small non-enveloped viruses with a (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6, 400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. Results A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y = U/C, N = any nucleotide, H = A/C/U). The putative RNA-binding tripeptide 154–156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. Discussion Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.
Collapse
Affiliation(s)
- Maria A Prostova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Andrei A Deviatkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Irina O Tcelykh
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Tsuchiaka S, Rahpaya SS, Otomaru K, Aoki H, Kishimoto M, Naoi Y, Omatsu T, Sano K, Okazaki-Terashima S, Katayama Y, Oba M, Nagai M, Mizutani T. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein. BMC Microbiol 2017; 17:18. [PMID: 28095784 PMCID: PMC5240211 DOI: 10.1186/s12866-016-0923-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. RESULTS The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. CONCLUSIONS We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.
Collapse
Affiliation(s)
- Shinobu Tsuchiaka
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sayed Samim Rahpaya
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Tsutomu Omatsu
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sachiko Okazaki-Terashima
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- Faculty of Bioresources and Environmental Sciences, Ishikawa prefectural University, 1-308, Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Tetsuya Mizutani
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan. .,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
7
|
Asnani M, Pestova TV, Hellen CUT. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Res 2016; 44:3390-407. [PMID: 26873921 PMCID: PMC4838371 DOI: 10.1093/nar/gkw074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/29/2016] [Indexed: 01/03/2023] Open
Abstract
Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| |
Collapse
|
8
|
Woo PCY, Lau SKP, Li T, Jose S, Yip CCY, Huang Y, Wong EYM, Fan RYY, Cai JP, Wernery U, Yuen KY. A novel dromedary camel enterovirus in the family Picornaviridae from dromedaries in the Middle East. J Gen Virol 2015; 96:1723-31. [PMID: 25805410 DOI: 10.1099/vir.0.000131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence of Middle East respiratory syndrome coronavirus from the Middle East and the discovery of the virus from dromedary camels have boosted interest in the search for novel viruses in dromedaries. Whilst picornaviruses are known to infect various animals, their existence in dromedaries was unknown. We describe the discovery of a novel picornavirus, dromedary camel enterovirus (DcEV), from dromedaries in Dubai. Among 215 dromedaries, DcEV was detected in faecal samples of four (1.9 %) dromedaries [one (0.5 %) adult dromedary and three (25 %) dromedary calves] by reverse transcription PCR. Analysis of two DcEV genomes showed that DcEV was clustered with other species of the genus Enterovirus and was most closely related to and possessed highest amino acid identities to the species Enterovirus E and Enterovirus F found in cattle. The G+C content of DcEV was 45 mol%, which differed from that of Enterovirus E and Enterovirus F (49-50 mol%) by 4-5 %. Similar to other members of the genus Enterovirus, the 5' UTR of DcEV possessed a putative type I internal ribosome entry site. The low ratios of the number of nonsynonymous substitutions per non-synonymous site to the number of synonymous substitutions per synonymous site (Ka/Ks) of various coding regions suggested that dromedaries are the natural reservoir in which DcEV has been stably evolving. These results suggest that DcEV is a novel species of the genus Enterovirus in the family Picornaviridae. Western blot analysis using recombinant DcEV VP1 polypeptide showed a high seroprevalence of 52 % among serum samples from 172 dromedaries for IgG, concurring with its much higher infection rates in dromedary calves than in adults. Further studies are important to understand the pathogenicity, epidemiology and genetic evolution of DcEV in this unique group of animals.
Collapse
Affiliation(s)
- Patrick C Y Woo
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Susanna K P Lau
- 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Tong Li
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Shanty Jose
- 5Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Cyril C Y Yip
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Emily Y M Wong
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Jian-Piao Cai
- 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Ulrich Wernery
- 5Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Kwok-Yung Yuen
- 4Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China 1State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China 2Department of Microbiology, The University of Hong Kong, Hong Kong, PR China 3Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
9
|
Zhu L, Xing Z, Gai X, Li S, San Z, Wang X. Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases. PLoS One 2014; 9:e97730. [PMID: 24830424 PMCID: PMC4022658 DOI: 10.1371/journal.pone.0097730] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/04/2022] Open
Abstract
In this study, a virus strain designated as HY12 was isolated from cattle with a disease of high morbidity and mortality in Jilin province. Biological and physiochemical properties showed that HY12 isolates is cytopathic with an extremely high infectivity. HY12 is resistant to treatment of organic solvent and acid, and unstable at 60°C for 1 h. Electron microscopy observation revealed the virus is an approximately 22–28 nm in diameter. The complete genome sequence of HY12 consists of 7416 nucleotides, with a typical picornavirus genome organization including a 5′-untranslated region (UTR), a large single ORF encoding a polyprotein of 2176 amino acids, and a 3′-UTR. Phylogenetic analysis clustered HY12 isolates to a new serotype/genotype within the clade of enterovirus E (formerly BEV-A). Alignment analysis revealed a unique insertion of 2 amino acid residues (NF) at the C-terminal of VP1 protein between aa 825 and 826, and several rare mutations in VP1 and VP4 of HY12 isolates in relation to known bovine enterovirus (BEV) strains. This is the first report of an enterovirus E in China, which is potentially associated with an outbreak in cattle with severe respiratory and enteric diseases.
Collapse
Affiliation(s)
- Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zeli Xing
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Sujing Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhihao San
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
10
|
Anbalagan S, Hesse RA, Hause BM. First identification and characterization of porcine enterovirus G in the United States. PLoS One 2014; 9:e97517. [PMID: 24824640 PMCID: PMC4019603 DOI: 10.1371/journal.pone.0097517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022] Open
Abstract
Porcine enterovirus G (EV-G) is a member of the family Picornavirdae, genus Enterovirus. To date, eleven EV-G types (EV-G1 through EV-G11) have been identified in pigs from Asia and Europe however they have never been reported in North America. In this study, we isolated and characterized the complete genome of NP/2013/USA, an EV-G from a porcine diarrhea sample from the United States. The complete genome consists of 7,390 nucleotides excluding the 3′ poly(A) tail, and has an open reading frame that encodes a 2,169 amino acid polyprotein. NP/2013/USA was most similar at the nucleotide (84%) and amino acid (95%) level to the HM131607, an EV-G1 type isolated from China in 2012.
Collapse
Affiliation(s)
| | - Richard A. Hesse
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Ben M. Hause
- Newport Laboratories, Inc., Worthington, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Liu B, Li Z, Xiang F, Li F, Zheng Y, Wang G. The whole genome sequence of coxsackievirus B3 MKP strain leading to myocarditis and its molecular phylogenetic analysis. Virol J 2014; 11:33. [PMID: 24555514 PMCID: PMC3996064 DOI: 10.1186/1743-422x-11-33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/16/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In recent years, the reported infection cases by coxsackievirus (CV) have been on the rise. In order to reveal the relationship between the nucleotide and amino acid sequences and the viral virulence of the CVB3/MKP strain causing myocarditis, we initially confirmed the virulence of the strain in myocardial tissue and then carried out the whole genome sequencing of CVB3/MKP strain and performed a phylogenetic analysis among different CVB3 strains. METHODS CVB3/MKP infected mouse model was established to check lesions of myocardial tissue in mice using immunohistochemical detection at different periods. RT-PCR analysis was used to amplify seven fragments covering the whole viral sequence and comparable analysis was performed. RESULTS The immunohistochemical results showed that particles of CVB3/MKP virus persisted in the cardiac tissue and caused severe pathology. The length of whole genome sequence of CVB3/MKP strain was 7400 bp. CVB3/MKP had 99.7% and 99.6% homology in nucleotide sequence with CVB3/28 and non-virulent CVB3/0, respectively. The former can induce pancreatitis and myocarditis. The nucleotide sequence in the 5'untranslated region of CVB3/MKP strain shared 99.6% and 99.5% homology with CVB3/20 and CVB3/Nancy, respectively. CONCLUSION We confirmed in our animal experiments that CVB3/MKP had cardiotoxicity. CVB3/MKP, CVB3/28, and CVB3/0 may share evolutionary convergence and the 5'untranslated region (5'UTR) may be associated with virulence phenotype. Our findings will provide a basis for identifying the genomic determinant of viral virulence of CVB3/MKP strain and phylogenetic relationship among different CVB3 strains.
Collapse
Affiliation(s)
| | | | | | | | - Yang Zheng
- Cardiovascular disease center, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | | |
Collapse
|
12
|
Sweeney TR, Abaeva IS, Pestova TV, Hellen CUT. The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 2013; 33:76-92. [PMID: 24357634 DOI: 10.1002/embj.201386124] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Picornavirus Type 1 IRESs comprise five principal domains (dII-dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans-acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
13
|
Boros Á, Pankovics P, Knowles NJ, Reuter G. Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 2012; 93:1941-1951. [DOI: 10.1099/vir.0.041335-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5′ UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5′ UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Nick J. Knowles
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| |
Collapse
|
14
|
Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, Gmyl AP, Grard G, Taty Taty R, Trotsenko OE, Leroy EM, Drosten C. Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. J Gen Virol 2012; 93:2357-2362. [PMID: 22894922 DOI: 10.1099/vir.0.043216-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The full coding sequences of two novel human enterovirus (HEV)-C serotypes 105 and 116, sampled in the Republic of the Congo in 2010 and in Russia in 2011, were identified in this study. Enterovirus (EV)-105 was closest to EV-104 in the 5' NTR and to EV-109 in the coding genome region. It had the same unconventional 5' NTR as EV-104 and EV-109. The non-cytopathogenic EV-116 was phylogenetically close to coxsackievirus (CV)-A1, CV-A19 and CV-A22, which also cannot be propagated in routinely used cell cultures. There were signs of recombination within this subgroup of HEV-C; however, recombination with conventional HEV-C was restricted, implying partial reproductive isolation. As there is also evidence of different permissive replication systems and distinct genetic properties of these subgroups, they may represent subspecies of the HEV-C species or different stages of speciation.
Collapse
Affiliation(s)
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeria O Kotova
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Elena N Amjaga
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Vadim I Reznik
- Center of Hygiene and Epidemiology in Khabarovsk Region, Khabarovsk, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Gilda Grard
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Raphael Taty Taty
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Olga E Trotsenko
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
15
|
Modification of the untranslated regions of human enterovirus 71 impairs growth in a cell-specific manner. J Virol 2011; 86:542-52. [PMID: 22031931 DOI: 10.1128/jvi.00069-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human enterovirus 71 (HEV71) is the causative agent of hand, foot, and mouth disease and associated acute neurological disease. At present, little is known about the genetic determinants of HEV71 neurovirulence. Studies of related enteroviruses have indicated that the untranslated regions (UTRs), which control virus-directed translation and replication, also exert significant influence on neurovirulence. We used an infectious cDNA clone of a subgenogroup B3 strain to construct and characterize chimeras with 5'- and 3'-UTR modifications. Replacement of the entire HEV71 5' UTR with that of human rhinovirus 2 (HRV2) resulted in a small reduction in growth efficiency in cells of both nonneuronal (rhabdomyosarcoma) and neuronal (SH-SY5Y) origin due to reduced translational efficiency. However, the introduction of a 17-nucleotide deletion into the proximal region of the 3' UTR significantly decreased the growth of HEV71-HRV2 in SH-SY5Y cells. This observation is similar to that made with stem-loop domain Z (SLD Z)-deleted coxsackievirus B3-HRV2 5'-UTR chimeras reported previously and provides the first evidence of a potentially functional SLD Z in the 3' UTR in human enterovirus A species viruses. We further showed that the cell-specific growth impairment was caused by the synergistic effects of cis-acting UTR control elements on different stages of the virus life cycle. These chimeras will further improve our understanding of the control of HEV71 replication and its relationship to neurovirulence.
Collapse
|
16
|
Choi CS, Choi YJ, Choi UY, Han JW, Jeong DC, Kim HH, Kim JH, Kang JH. Clinical manifestations of CNS infections caused by enterovirus type 71. KOREAN JOURNAL OF PEDIATRICS 2011; 54:11-6. [PMID: 21359055 PMCID: PMC3040360 DOI: 10.3345/kjp.2011.54.1.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/19/2010] [Accepted: 11/08/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE Enterovirus 71, one of the enteroviruses that are responsible for both hand-foot-and-mouth disease and herpangina, can cause neural injury. During periods of endemic spread of hand-foot-andmouth disease caused by enterovirus 71, CNS infections are also frequently diagnosed and may lead to increased complications from neural injury, as well as death. We present the results of our epidemiologic research on the clinical manifestations of children with CNS infections caused by enterovirus 71. METHODS The study group consisted of 42 patients admitted for CNS infection by enterovirus 71 between April 2009 and October 2009 at the Department of Pediatrics of 5 major hospitals affiliated with the Catholic University of Korea. We retrospectively reviewed initial symptoms and laboratory findings on admission, the specimen from which enterovirus 71 was isolated, fever duration, admission period, treatment and progress, and complications. We compared aseptic meningitis patients with encephalitis patients. RESULTS Of the 42 patients (23 men, 19 women), hand-foot-and-mouth disease was most prevalent (n=39), followed by herpangina (n=3), upon initial clinical diagnosis. Among the 42 patients, 15 (35.7%) were classified as severe, while 27 (64.3%) were classified as mild. Factors such as age, fever duration, presence of seizure, and use of intravenous immunoglobulin (IVIG) were statistically different between the 2 groups. CONCLUSION Our results indicate that patients with severe infection caused by enterovirus 71 tended to be less than 3 years old, presented with at least 3 days of fever as well as seizure activity, and received IVIG treatment.
Collapse
Affiliation(s)
- Cheol Soon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
An RNA element at the 5'-end of the poliovirus genome functions as a general promoter for RNA synthesis. PLoS Pathog 2010; 6:e1000936. [PMID: 20532207 PMCID: PMC2880563 DOI: 10.1371/journal.ppat.1000936] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/03/2010] [Indexed: 12/28/2022] Open
Abstract
RNA structures present throughout RNA virus genomes serve as scaffolds to organize multiple factors involved in the initiation of RNA synthesis. Several of these RNA elements play multiple roles in the RNA replication pathway. An RNA structure formed around the 5′- end of the poliovirus genomic RNA has been implicated in the initiation of both negative- and positive-strand RNA synthesis. Dissecting the roles of these multifunctional elements is usually hindered by the interdependent nature of the viral replication processes and often pleiotropic effects of mutations. Here, we describe a novel approach to examine RNA elements with multiple roles. Our approach relies on the duplication of the RNA structure so that one copy is dedicated to the initiation of negative-strand RNA synthesis, while the other mediates positive-strand synthesis. This allows us to study the function of the element in promoting positive-strand RNA synthesis, independently of its function in negative-strand initiation. Using this approach, we demonstrate that the entire 5′-end RNA structure that forms on the positive-strand is required for initiation of new positive-strand RNAs. Also required to initiate positive-strand RNA synthesis are the binding sites for the viral polymerase precursor, 3CD, and the host factor, PCBP. Furthermore, we identify specific nucleotide sequences within “stem a” that are essential for the initiation of positive-strand RNA synthesis. These findings provide direct evidence for a trans-initiation model, in which binding of proteins to internal sequences of a pre-existing positive-strand RNA affects the synthesis of subsequent copies of that RNA, most likely by organizing replication factors around the initiation site. Enteroviruses are a subfamily of small, pathogenic, icosahedral viruses called picornaviruses. Poliovirus, the etiologic agent of paralytic poliomyelitis, is one of the most extensively studied members of this family. Poliovirus RNA replication utilizes a mechanism, common to all positive, single-stranded, lytic RNA viruses, which permits the amplification of a single initial molecule of RNA into thousands of RNA progeny in only a few hours. After entry, the viral genomic RNA is transcribed to generate a complementary RNA (negative-strand), which, in turn, is used as a template to synthesize new strands of genomic RNA (positive-strand). The specificity of the viral RNA template, and the relationship between translation and replication, are controlled by RNA elements present throughout the genome. Individual elements often carry out multiple, interdependent tasks, complicating the dissection of their precise roles in specific steps of replication. We employed a novel approach to overcome this roadblock. Our strategy demonstrated that an RNA element present at the 5′ end of the virus genome is the master regulator of the initiation of RNA synthesis.
Collapse
|
18
|
Park K, Lee K, Baek K, Jung E, Park S, Cho Y, Song J, Ahn G, Cheon DS. [Application of a diagnostic method using reverse transcription-PCR ELISA for the diagnosis of enteroviral infections]. Korean J Lab Med 2010; 29:594-600. [PMID: 20046094 DOI: 10.3343/kjlm.2009.29.6.594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enteroviruses are known as major pathogen for aseptic meningitis. Although rapid diagnosis for enteroviruses is very essential to exclude bacterial infections in patients with meningitis, classical diagnostic method based on virus isolation is not practicable for timely treatment of patients due to its laborious and time-consuming procedure. Recently molecular methodologies as alternatives are routinely used for rapid and sensitive diagnosis for enteroviruses infections. METHODS Reverse transcription (RT)-PCR ELISA kit for targeting 5' non-coding region (NCR) with highly conserved genetic identity among all genotypes of enteroviruses was introduced in this investigation. RT-PCR ELISA was evaluated about sensitivity and specificity through virus isolation using clinical specimens from patients suspected of enteroviral infections and enteroviral isolates comparing with conventional RT-PCR identifying them. RESULTS The detection limit of the RT-PCR ELISA was up to 10-100 folds higher than virus isolation using cell culture and conventional RT-PCR. On comparison between above two methods, the detection rate of RT-PCR ELISA for clinical specimens from patients with aseptic meningitis was 7% higher than that of conventional RT-PCR targeting 5'NCR (P=0.016). CONCLUSIONS Our results suggest that RT-PCR ELISA developed in this study could be an alternative diagnostic method for the detection of enteroviral genome with high sensitivity and specificity.
Collapse
Affiliation(s)
- Kwisung Park
- Chungcheongnam-do Health & Environment Research Institute, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zell R, Ihle Y, Effenberger M, Seitz S, Wutzler P, Görlach M. Interaction of poly(rC)-binding protein 2 domains KH1 and KH3 with coxsackievirus RNA. Biochem Biophys Res Commun 2008; 377:500-503. [PMID: 18929541 DOI: 10.1016/j.bbrc.2008.09.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022]
Abstract
Recombinant hnRNP K-homology (KH) domains 1 and 3 of the poly(rC)-binding protein (PCBP) 2 were purified and assayed for interaction with coxsackievirus B3 RNA in electrophoretic mobility shift assays using in vitro transcribed RNAs which represent signal structures of the 5'-nontranslated region. KH domains 1 and 3 interact with the extended cloverleaf RNA and domain IV RNA of the internal ribosome entry site (IRES). KH1 but not KH3 interacts with subdomain IV/C RNA, whereas KH3 interacts with subdomain IV/B. All in vitro results are consistent with yeast three-hybrid experiments performed in parallel. The data demonstrate interaction of isolated PCBP2 KH1 and KH3 domains to four distinct target sites within the 5'-nontranslated region of the CVB3 genomic RNA.
Collapse
Affiliation(s)
- Roland Zell
- Institute for Virology and Antiviral Therapy, Friedrich Schiller University, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Yvonne Ihle
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Madlen Effenberger
- Institute for Virology and Antiviral Therapy, Friedrich Schiller University, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Simone Seitz
- Institute for Virology and Antiviral Therapy, Friedrich Schiller University, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Peter Wutzler
- Institute for Virology and Antiviral Therapy, Friedrich Schiller University, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Matthias Görlach
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany
| |
Collapse
|
20
|
Poly(rC)-binding protein 2 interacts with the oligo(rC) tract of coxsackievirus B3. Biochem Biophys Res Commun 2008; 366:917-21. [DOI: 10.1016/j.bbrc.2007.12.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/23/2022]
|
21
|
Gharbi J, el Hiar R, Ben M'hadheb M, Jaïdane H, Bouslama L, N'saïbia S, Aouni M. Nucleotide sequences of IRES domains IV and V of natural ECHO virus type 11 isolates with different replicative capacity phenotypes. Virus Genes 2006; 32:269-76. [PMID: 16732479 DOI: 10.1007/s11262-005-6911-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/28/2005] [Indexed: 10/24/2022]
Abstract
ECHO viruses (ECV) belong to the enterovirus genus of the Picornaviridae family and are the most frequently isolated from clinical and environmental samples. They are responsible for a wide variety of clinical syndromes involving most organs of the human body. We previously postulated that some of the variations in the recognition of ECHO virus type 11 (ECV 11) strains by a group specific monoclonal antibody (Mab) which we have studied could be explained by variations in their replicative capacity in cell culture and variations within the 5' nontranslated region (5' NTR) of their genomes. To support this hypothesis, the replicative capacity in cell culture and the nucleotide sequences of domains IV and V of the IRES of the genome of five ECV11 strains (the Gregory reference strain and four wild isolates) were determined, and analysed. Our results indicate that the replicative capacity of wild ECV11 isolates studied by one-step growth cycle in both HEp-2 and Vero cell cultures showed variations among strains in comparison with the Gregory reference strain. The clinical ECV11 strains replicated as well as the reference strain, however environmental strains displayed a phenotype with a significant reduction of replication. The sequences of ECV 11 strains showed significant conservation with that of the poliovirus (PV1) Mahoney strain The comparative examination of the predicted secondary structures revealed, that the nucleotide variations did not affect the secondary structure of stem-loop structure IV and V in the IRES element, however differences were especially observed in the apical stem region (nucleotides 483 to 509) of the domain V of the ECV11 strains and resulted in modification of the central stem structure.
Collapse
Affiliation(s)
- Jawhar Gharbi
- Faculté de Pharmacie de Monastir, Laboratoire des Maladies Transmissibles, Unité Pathogenése & Atténuation Virales, Avenue Avicenne, 5000, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zell R, Krumbholz A, Dauber M, Hoey E, Wutzler P. Molecular-based reclassification of the bovine enteroviruses. J Gen Virol 2006; 87:375-385. [PMID: 16432025 DOI: 10.1099/vir.0.81298-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine enteroviruses are currently classified into two serotypes within the species Bovine enterovirus (BEV). Comparison of the sequences of six American and eleven German BEV isolates with published BEV sequences revealed the necessity to revise the taxonomy of these viruses. Molecular data indicate that the bovine enteroviruses are composed of two clusters (designated BEV-A and -B) each with two and three geno-/serotypes, respectively. Whereas low amino acid identity of the capsid proteins 1C (VP3) and 1D (VP1) is the main criterion for the discrimination of geno-/serotypes, the BEV clusters, presumably representing species, differ in sequence identity of all viral proteins. In addition, characteristic lengths of (i) the capsid proteins 1B, 1C and 1D, (ii) the 2C protein, and (iii) the 3'-non-translated region are observed. The BEVs can be distinguished from the other enteroviruses by sequence identity and unique features of the 5'-non-translated region, i.e. a conserved second cloverleaf and characteristic RNA structures of the internal ribosome entry site. Phylogenetically, the closest relatives of the bovine enteroviruses are the porcine enteroviruses. Incongruent phylogenies of the 5'-non-translated region, the capsid proteins and the 3D polymerase indicate frequent intraserotypic and interserotypic recombination within the non-capsid and the capsid region of the BEV genome.
Collapse
Affiliation(s)
- Roland Zell
- Institute for Virology and Antiviral Therapy, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Andi Krumbholz
- Institute for Virology and Antiviral Therapy, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Malte Dauber
- Institute for Virus Diagnostics, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Boddenblick 5a, 17493 Insel Riems, Germany
| | - Elizabeth Hoey
- School of Biology & Biochemistry, Medical Biology Centre, The Queen's University of Belfast, UK
| | - Peter Wutzler
- Institute for Virology and Antiviral Therapy, Hans-Knöll-Str. 2, 07745 Jena, Germany
| |
Collapse
|
23
|
Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, Barry WH, Chapman NM. 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005; 79:7024-41. [PMID: 15890942 PMCID: PMC1112132 DOI: 10.1128/jvi.79.11.7024-7041.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/physiology
- Enterovirus Infections/virology
- Genome, Viral
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred A
- Molecular Sequence Data
- Myocarditis/virology
- Myocytes, Cardiac/virology
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagashima S, Sasaki J, Taniguchi K. The 5'-terminal region of the Aichi virus genome encodes cis-acting replication elements required for positive- and negative-strand RNA synthesis. J Virol 2005; 79:6918-31. [PMID: 15890931 PMCID: PMC1112095 DOI: 10.1128/jvi.79.11.6918-6931.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
25
|
Ihle Y, Ohlenschläger O, Häfner S, Duchardt E, Zacharias M, Seitz S, Zell R, Ramachandran R, Görlach M. A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA. Nucleic Acids Res 2005; 33:2003-11. [PMID: 15814817 PMCID: PMC1074726 DOI: 10.1093/nar/gki501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/07/2005] [Accepted: 03/21/2005] [Indexed: 11/24/2022] Open
Abstract
The 5'-terminal cloverleaf (CL)-like RNA structures are essential for the initiation of positive- and negative-strand RNA synthesis of entero- and rhinoviruses. SLD is the cognate RNA ligand of the viral proteinase 3C (3C(pro)), which is an indispensable component of the viral replication initiation complex. The structure of an 18mer RNA representing the apical stem and the cGUUAg D-loop of SLD from the first 5'-CL of BEV1 was determined in solution to a root-mean-square deviation (r.m.s.d.) (all heavy atoms) of 0.59 A (PDB 1Z30). The first (antiG) and last (synA) nucleotide of the D-loop forms a novel 'pseudo base pair' without direct hydrogen bonds. The backbone conformation and the base-stacking pattern of the cGUUAg-loop, however, are highly similar to that of the coxsackieviral uCACGg D-loop (PDB 1RFR) and of the stable cUUCGg tetraloop (PDB 1F7Y) but surprisingly dissimilar to the structure of a cGUAAg stable tetraloop (PDB 1MSY), even though the cGUUAg BEV D-loop and the cGUAAg tetraloop differ by 1 nt only. Together with the presented binding data, these findings provide independent experimental evidence for our model [O. Ohlenschlager, J. Wohnert, E. Bucci, S. Seitz, S. Hafner, R. Ramachandran, R. Zell and M. Gorlach (2004) Structure, 12, 237-248] that the proteinase 3C(pro) recognizes structure rather than sequence.
Collapse
Affiliation(s)
- Yvonne Ihle
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Sabine Häfner
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Elke Duchardt
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
| | - Martin Zacharias
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
| | - Simone Seitz
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Roland Zell
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Ramadurai Ramachandran
- Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V.Beutenbergstraße 11, D-07745 Jena, Germany
- Institut für Organische Chemie, Johann-Wolfgang-Goethe-UniversitätMarie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, D-28759 Bremen, Germany
- Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-UniversitätWinzerlaer Straße 10, D-07745 Jena, Germany
| | - Matthias Görlach
- To whom correspondence should be addressed. Tel: +49 3641 656220; Fax: +49 3641 656225;
| |
Collapse
|
26
|
Lee CK, Kono K, Haas E, Kim KS, Drescher KM, Chapman NM, Tracy S. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. J Gen Virol 2005; 86:197-210. [PMID: 15604447 DOI: 10.1099/vir.0.80424-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause numerous diseases, including myocarditis, pancreatitis, aseptic meningitis and possibly type 1 diabetes. To date, infectious cDNA copies of CVB type 3 (CVB3) genomes have all been derived from pathogenic virus strains. An infectious cDNA copy of the well-characterized, non-pathogenic CVB3 strain GA genome was cloned in order to facilitate mapping of the CVB genes that influence expression of a virulence phenotype. Comparison of the sequence of the parental CVB3/GA population, derived by direct RT-PCR-mediated sequence analysis, to that of the infectious CVB3/GA progeny genome demonstrated that an authentic copy was cloned; numerous differences were observed in coding and non-coding sequences relative to other CVB3 strains. Progeny CVB3/GA replicated similarly to the parental strain in three different cell cultures and was avirulent when inoculated into mice, causing neither pancreatitis nor myocarditis. Inoculation of mice with CVB3/GA protected mice completely against myocarditis and pancreatitis induced by cardiovirulent CVB3 challenge. The secondary structure predicted for the CVB3/GA domain II, a region within the 5′ non-translated region that is implicated as a key site affecting the expression of a cardiovirulent phenotype, differs from those predicted for cardiovirulent and pancreovirulent CVB3 strains. This is the first report characterizing a cloned CVB3 genome from an avirulent strain.
Collapse
Affiliation(s)
- C-K Lee
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K Kono
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - E Haas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - S Tracy
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Goens SD, Botero S, Zemla A, Zhou CE, Perdue ML. Bovine enterovirus 2: complete genomic sequence and molecular modelling of a reference strain and a wild-type isolate from endemically infected US cattle. J Gen Virol 2004; 85:3195-3203. [PMID: 15483232 DOI: 10.1099/vir.0.80159-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bovine enteroviruses are members of the family Picornaviridae, genus Enterovirus. Whilst little is known about their pathogenic potential, they are apparently endemic in some cattle and cattle environments. Only one of the two current serotypes has been sequenced completely. In this report, the entire genome sequences of bovine enterovirus 2 (BEV-2) strain PS87 and a recent isolate from an endemically infected herd in Maryland, USA (Wye3A) are presented. The recent isolate clearly segregated phylogenetically with sequences representing the BEV-2 serotype, as did other isolates from the endemic herd. The Wye3A isolate shared 82 % nucleotide sequence identity with the PS87 strain and 68 % identity with a BEV-1 strain (VG5-27). Comparison of BEV-2 and BEV-1 deduced protein sequences revealed 72-73 % identity and showed that most differences were single amino acid changes or single deletions, with the exception of the VP1 protein, where both BEV-2 sequences were 7 aa shorter than that of BEV-1. Homology modelling of the capsid proteins of BEV-2 against protein database entries for picornaviruses indicated six significant differences among bovine enteroviruses and other members of the family Picornaviridae. Five of these were on the 'rim' of the proposed enterovirus receptor-binding site or 'canyon' (VP1) and one was near the base of the canyon (VP3). Two of these regions varied enough to distinguish BEV-2 from BEV-1 strains. This is the first report and analysis of full-length sequences for BEV-2. Continued analysis of these wild-type strains should yield useful information for genotyping enteroviruses and modelling enterovirus capsid structure.
Collapse
Affiliation(s)
- S D Goens
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| | - S Botero
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| | - A Zemla
- Bioinformatics, Chemical and Biological National Security Program, Computing Applications and Research Department, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - C Ecale Zhou
- Bioinformatics, Chemical and Biological National Security Program, Computing Applications and Research Department, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - M L Perdue
- Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, Beltsville Agriculture Research Center, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
28
|
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 2004; 12:237-48. [PMID: 14962384 DOI: 10.1016/j.str.2004.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/24/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Institut für Molekulare Biotechnologie eV, Bentenbergstr 100813, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagashima S, Sasaki J, Taniguchi K. Functional analysis of the stem-loop structures at the 5' end of the Aichi virus genome. Virology 2003; 313:56-65. [PMID: 12951021 DOI: 10.1016/s0042-6822(03)00346-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aichi virus is a member of the family Picornaviridae. Computer-assisted secondary structure prediction suggested the formation of three stem-loop structures (SL-A, SL-B, and SL-C from the 5' end) within the 5'-end 120 nucleotides of the genome. We have already shown that the most 5'-end stem-loop, SL-A, is critical for viral RNA replication. Here, using an infectious cDNA clone and a replicon harboring a luciferase gene, we revealed that formation of SL-B and SL-C on the positive strand is essential for viral RNA replication. In addition, the specific nucleotide sequence of the loop segment of SL-B was also shown to be critical for viral RNA replication. Mutations of the upper and lower stems of SL-C that do not disrupt the base-pairings hardly affected RNA replication, but decreased the yields of viable viruses significantly compared with for the wild-type. This suggests that SL-C plays a role at some step besides RNA replication during virus infection.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | |
Collapse
|
30
|
Rieder E, Xiang W, Paul A, Wimmer E. Analysis of the cloverleaf element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure, ternary protein complex formation and virus replication. J Gen Virol 2003; 84:2203-2216. [PMID: 12867653 DOI: 10.1099/vir.0.19013-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA genomes of enteroviruses and rhinoviruses contain a 5'-terminal structure, the cloverleaf (CL), which serves as signal in RNA synthesis. Substitution of the poliovirus [PV1(M)] CL with that of human rhinovirus type 2 (HRV2) was shown previously to produce a viable chimeric PV, whereas substitution with the HRV14 CL produced a null phenotype. Fittingly, the HRV14 CL failed to form a complex with PV-specific proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2, considered essential for RNA synthesis. It was reported previously (Rohll et al., J Virol 68, 4384-4391, 1994) that the major determinant for the null phenotype of a PV/HRV14 chimera resides in subdomain Id of the HRV14 CL. Using a chimeric PV/HRV14 CL in the context of the PV genome, stem-loop Id of HRV14 CL was genetically dissected. It contains the sequence C(57)UAU(60)-G, the underlined nucleotides forming the loop that is shorter by 1 nt when compared to the corresponding PV structure (UUGC(60)GG). Insertion of a G nucleotide to form a tetra loop (C(57)UAU(60)GG(61)) did not rescue replication of the chimera. However, an additional mutation at position 60 (C(57)UAC(60)GG(61)) yielded a replicating genome. Only the mutant PV/HRV14 CL with the UAC(60)G tetra loop formed ternary complexes efficiently with either PV proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2. Thus, in the context of PV RNA synthesis, the presence of a tetra loop in subdomain D of the CL per se is not sufficient for function. The sequence and, consequently, the structure of the tetra loop plays an essential role. Biochemical assays demonstrated that the function of the CL element and the function of the cis-acting replication element in the 3D(pol)-3CD(pro)-dependent uridylylation of VPg are not linked.
Collapse
Affiliation(s)
- Elizabeth Rieder
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Wenkai Xiang
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Aniko Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
31
|
Carlson CB, Vuyisich M, Gooch BD, Beal PA. Preferred RNA binding sites for a threading intercalator revealed by in vitro evolution. CHEMISTRY & BIOLOGY 2003; 10:663-72. [PMID: 12890540 DOI: 10.1016/s1074-5521(03)00147-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In pursuit of small molecules capable of controlling the function of RNA targets, we have explored the RNA binding properties of peptide-acridine conjugates (PACs). In vitro evolution (SELEX) was used to isolate RNAs capable of binding the PAC Ser-Val-Acr-Arg, where Acr is an acridine amino acid. The PAC binds RNA aptamers selectively and with a high degree of discrimination over DNA. PAC binding sites contain the base-paired 5'-CpG-3' sequence, a known acridine intercalation site. However, RNA structure flanking this sequence causes binding affinities to vary over 30-fold. The preferred site (K(D) = 20 nM) contains a base-paired 5'-CpG-3' step flanked on the 5' side by a 4 nt internal loop and the 3' side by a bulged U. Several viral 5'- and 3'-UTR RNA sequences that likely form binding sites for this PAC are identified.
Collapse
Affiliation(s)
- Coby B Carlson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
32
|
Merkle I, van Ooij MJM, van Kuppeveld FJM, Glaudemans DHRF, Galama JMD, Henke A, Zell R, Melchers WJG. Biological significance of a human enterovirus B-specific RNA element in the 3' nontranslated region. J Virol 2002; 76:9900-9. [PMID: 12208967 PMCID: PMC136489 DOI: 10.1128/jvi.76.19.9900-9909.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 06/24/2002] [Indexed: 11/20/2022] Open
Abstract
The secondary structures predicted for the enteroviral 3' nontranslated region (3'NTR) all seem to indicate a conformation consisting of two (X and Y) hairpin structures. The higher-order RNA structure of the 3'NTR appears to exist as an intramolecular kissing interaction between the loops of these two hairpin structures. The enterovirus B-like subgroup possesses an additional stem-loop structure, domain Z, which is not present in the poliovirus-like enteroviruses. It has been suggested that the Z domain originated from a burst of short sequence repetitions (E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V. I. Agol, Nucleic Acids Res. 20:1739-1745, 1992). However, no functional features have yet been ascribed to this enterovirus B-like-specific RNA element in the 3'NTR. In this study, we tested the functional characteristics and biological significance of domain Z. A mutant of the cardiovirulent coxsackievirus group B3 strain Nancy which completely lacked the Z domain and which therefore acquired enterovirus C-like secondary structures exhibited a wild-type growth phenotype, as determined by single-cycle growth analysis with BGM cells. This result proves that the Z domain is virtually dispensable for viral growth in tissue cultures. Partial distortion of the Z domain structure resulted in a disabled virus with reduced growth kinetics, probably due to alternative conformations of the overall structure of the domain. Infection of mice showed that the recombinant coxsackievirus group B3 mutant which completely lacked the Z domain was less virulent. Pancreatic tissues from mice infected with wild-type virus and recombinant virus were equally affected. However, the heart tissue from mice infected with the recombinant virus showed only slight signs of myocarditis. These results suggest that the enterovirus B-like-specific Z domain plays a role in coxsackievirus-induced pathogenesis.
Collapse
Affiliation(s)
- Ingrid Merkle
- Institute of Virology, Friedrich Schiller University, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Surface waters frequently have been contaminated with human enteric viruses, and it is likely that animal enteric viruses have contaminated surface waters also. Bovine enteroviruses (BEV), found in cattle worldwide, usually cause asymptomatic infections and are excreted in the feces of infected animals in large numbers. In this study, the prevalence and genotype of BEV in a closed herd of cattle were evaluated and compared with BEV found in animals in the immediate environment and in environmental specimens. BEV was found in feces from 76% of cattle, 38% of white-tailed deer, and one of three Canada geese sharing the same pastures, as well as the water obtained from animal watering tanks, from the pasture, from streams running from the pasture to an adjacent river, and from the river, which emptied into the Chesapeake Bay. Furthermore, BEV was found in oysters collected from that river downstream from the farm. These findings suggest that BEV could be used as an indicator of fecal pollution originating from animals (cattle and/or deer). Partial sequence analysis of the viral genomes indicates that different viral variants coexist in the same area. The possibility of identifying the viral strains found in the animals and in the contaminated areas by sequencing the RNA genome, could provide a tool to find the origin of the contamination and should be useful for epidemiological and viral molecular evolution studies.
Collapse
Affiliation(s)
- Victoria Ley
- Animal Waste Pathogen Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
34
|
Dunn JJ, Chapman NM, Tracy S, Romero JR. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5' nontranslated region. J Virol 2000; 74:4787-94. [PMID: 10775617 PMCID: PMC112001 DOI: 10.1128/jvi.74.10.4787-4794.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 02/04/2000] [Indexed: 01/23/2023] Open
Abstract
Coxsackievirus B3 (CVB3) infections can cause myocarditis in humans and are implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, cardiovirulence determinants have been identified in the CVB3 5' nontranslated region (5'NTR) and capsid. The myocarditic phenotypes of two CVB3 clinical isolates were determined using an established murine model of inflammatory heart disease. The 5'NTRs and capsid proteins of the noncardiovirulent CVB3/CO strain and cardiovirulent CVB3/AS strain were examined to determine their influence on the cardiovirulence phenotype. Six intratypic chimeric viruses were constructed in which 5'NTR and capsid sequences of the infectious cDNA copy of the cardiovirulent CVB3/20 genome were replaced by homologous sequences from CVB3/CO or CVB3/AS. Chimeric strains were tested for cardiovirulence by inoculation of C3H/HeJ mice. Sections of hearts removed at 10 days postinoculation were examined for evidence of myocarditis by light microscopy and assayed for the presence of virus. Replacement of the CVB3/20 capsid coding region by that from the homologous region of CVB3/CO resulted in no change in the cardiovirulent CVB3/20 phenotype, with virus recoverable from the heart at 10 days postinoculation. However, recombinant virus containing the CVB3/CO 5'NTR alone or the 5'NTR and capsid sequences together were not myocarditic, and infectious virus was not recovered from the myocardium. Chimeric viruses containing the CVB3/AS 5'NTR alone, capsid sequence alone, or both together preserved the myocarditic phenotype. These data support the 5'NTR as the primary site in the determination of the natural cardiovirulence phenotype of CVB3.
Collapse
Affiliation(s)
- J J Dunn
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|