1
|
Ota E, Masuta C, Takeshita M. Generation and Retention of Defective RNA3 from Cucumber Mosaic Virus and Relevance of the 2b Protein to Generation of the Subviral RNA. THE PLANT PATHOLOGY JOURNAL 2023; 39:592-599. [PMID: 38081319 PMCID: PMC10721387 DOI: 10.5423/ppj.ft.07.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
A defective RNA3 (D3Yα) of strain Y of cucumber mosaic virus (CMV-Y) was examined on host-specific maintenance, experimental conditions, and a viral factor required for its generation in plants. D3Yα was stably maintained in cucumber but not in tomato plants for 28 days post inoculation (dpi). D3Yα was generated in Nicotiana tabacum or N. benthamiana after prolonged infection in the second and the third passages, but not in plants of N. benthamiana grown at low temperature at 28 dpi or infected with CMV-Y mutant that had the 2b gene deleted. Collectively, we suggest that generation and retention of D3Yα depends on potential host plants and experimental conditions, and that the 2b protein has a role for facilitation of generation of D3Yα.
Collapse
Affiliation(s)
- Emi Ota
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
2
|
Budzyńska D, Zwart MP, Hasiów-Jaroszewska B. Defective RNA Particles of Plant Viruses-Origin, Structure and Role in Pathogenesis. Viruses 2022; 14:2814. [PMID: 36560818 PMCID: PMC9786237 DOI: 10.3390/v14122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The genomes of RNA viruses may be monopartite or multipartite, and sub-genomic particles such as defective RNAs (D RNAs) or satellite RNAs (satRNAs) can be associated with some of them. D RNAs are small, deletion mutants of a virus that have lost essential functions for independent replication, encapsidation and/or movement. D RNAs are common elements associated with human and animal viruses, and they have been described for numerous plant viruses so far. Over 30 years of studies on D RNAs allow for some general conclusions to be drawn. First, the essential condition for D RNA formation is prolonged passaging of the virus at a high cellular multiplicity of infection (MOI) in one host. Second, recombination plays crucial roles in D RNA formation. Moreover, during virus propagation, D RNAs evolve, and the composition of the particle depends on, e.g., host plant, virus isolate or number of passages. Defective RNAs are often engaged in transient interactions with full-length viruses-they can modulate accumulation, infection dynamics and virulence, and are widely used, i.e., as a tool for research on cis-acting elements crucial for viral replication. Nevertheless, many questions regarding the generation and role of D RNAs in pathogenesis remain open. In this review, we summarise the knowledge about D RNAs of plant viruses obtained so far.
Collapse
Affiliation(s)
- Daria Budzyńska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Wl Wegorka 20, 60-318 Poznan, Poland
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Wl Wegorka 20, 60-318 Poznan, Poland
| |
Collapse
|
3
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
4
|
Sardanyés J, Elena SF. Error threshold in RNA quasispecies models with complementation. J Theor Biol 2010; 265:278-86. [DOI: 10.1016/j.jtbi.2010.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/26/2010] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
|
5
|
Narabayashi T, Iwahashi F, Kaido M, Okuno T, Mise K. Melandrium yellow fleck bromovirus infects Arabidopsis thaliana and has genomic RNA sequence characteristics that are unique among bromoviruses. Arch Virol 2009; 154:1381-9. [PMID: 19597694 DOI: 10.1007/s00705-009-0449-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
Melandrium yellow fleck bromovirus (MYFV) systemically infected Arabidopsis thaliana, although the susceptibility of several A. thaliana accessions to MYFV differed from their susceptibility to the other two bromoviruses infecting A. thaliana. We constructed full-length cDNA clones of MYFV genomic RNAs 1, 2, and 3 and determined their complete nucleotide sequences. Similar to Broad bean mottle bromovirus, (1) the 5'-terminal nucleotide of the MYFV genomic RNAs was adenine, and (2) the "D-arm" was absent from the tRNA-like structure in the 3' untranslated regions (UTRs) of MYFV RNAs. As unique characteristics, MYFV RNA3 lacked the poly(A) tract in the intercistronic region and contained a directly repeated sequence of about 200 nucleotides and polypyrimidine tracts of heterogeneous lengths in the 5' UTR. Co-infection experiments using RNA3 clones with or without the duplicated sequence demonstrated that the duplication contributed to the competitive fitness of the virus in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Taiki Narabayashi
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
6
|
Genetic analysis of a host determination mechanism of bromoviruses in Arabidopsis thaliana. Virus Res 2009; 140:103-11. [DOI: 10.1016/j.virusres.2008.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/01/2008] [Accepted: 11/10/2008] [Indexed: 12/24/2022]
|
7
|
Sztuba-Solinska J, Bujarski JJ. Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 2008; 82:10330-40. [PMID: 18684833 PMCID: PMC2573203 DOI: 10.1128/jvi.00746-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joanna Sztuba-Solinska
- Department of Biological Sciences, Plant Molecular Biology Center, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | |
Collapse
|
8
|
Akamatsu N, Takeda A, Kishimoto M, Kaido M, Okuno T, Mise K. Phosphorylation and interaction of the movement and coat proteins of brome mosaic virus in infected barley protoplasts. Arch Virol 2007; 152:2087-93. [PMID: 17680322 DOI: 10.1007/s00705-007-1038-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
The 3a movement protein (B3a) of brome mosaic virus (BMV) plays essential roles in the cell-to-cell movement of BMV. B3a is known to bind nucleic acids, to transport RNA to neighbouring cells, and to form tubular structures. Here, we tested the assumption that phosphorylation may be a mechanism that regulates B3a functions and showed that not only B3a but also the coat protein, BCP, was phosphorylated in BMV-infected barley protoplasts. Both BCP and B3a were detected in a complex immunoprecipitated from BMV-infected protoplasts with anti-B3a antiserum, implying an interaction between BCP and B3a.
Collapse
Affiliation(s)
- N Akamatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
10
|
Hema M, Gopinath K, Kao C. Repair of the tRNA-like CCA sequence in a multipartite positive-strand RNA virus. J Virol 2005; 79:1417-27. [PMID: 15650168 PMCID: PMC544147 DOI: 10.1128/jvi.79.3.1417-1427.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined.
Collapse
Affiliation(s)
- M Hema
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
11
|
Tatsuta M, Mizumoto H, Kaido M, Mise K, Okuno T. The red clover necrotic mosaic virus RNA2 trans-activator is also a cis-acting RNA2 replication element. J Virol 2005; 79:978-86. [PMID: 15613326 PMCID: PMC538547 DOI: 10.1128/jvi.79.2.978-986.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the coat protein gene requires RNA-mediated trans-activation of subgenomic RNA synthesis in Red clover necrotic mosaic virus (RCNMV), the genome of which consists of two positive-strand RNAs, RNA1 and RNA2. The trans-acting RNA element required for subgenomic RNA synthesis from RNA1 has been mapped previously to the protein-coding region of RNA2, whereas RNA2 is not required for the replication of RNA1. In this study, we investigated the roles of the protein-coding region in RNA2 replication by analyzing the replication competence of RNA2 mutants containing deletions or nucleotide substitutions. Our results indicate that the same stem-loop structure (SL2) that functions as a trans-activator for RNA-mediated coat protein expression is critically required for the replication of RNA2 itself. Interestingly, however, disruption of the RNA-RNA interaction by nucleotide substitutions in the region of RNA1 corresponding to the SL2 loop of RNA2 does not affect RNA2 replication, indicating that the RNA-RNA interaction is not required for RNA2 replication. Further mutational analysis showed that, in addition to the stem-loop structure itself, nucleotide sequences in the stem and in the loop of SL2 are important for the replication of RNA2. These findings suggest that the structure and nucleotide sequence of SL2 in RNA2 play multiple roles in the virus life cycle.
Collapse
Affiliation(s)
- Masahiro Tatsuta
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
12
|
Fujisaki K, Hagihara F, Azukawa Y, Kaido M, Okuno T, Mise K. Identification and characterization of the SSB1 locus involved in symptom development by Spring beauty latent virus infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:967-975. [PMID: 15384487 DOI: 10.1094/mpmi.2004.17.9.967] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The natural variation of Arabidopsis thaliana in response to a bromovirus, Spring beauty latent virus (SBLV), was examined. Of 63 Arabidopsis accessions tested, all were susceptible when inoculated with SBLV, although there was a large degree of variation in symptom development. Most accessions, including Columbia (Col-0), were symptomless or developed only mild symptoms, but four accessions, including S96, showed severe symptoms of SBLV infection. Genetic analysis suggested that the difference in the responses of Col-0 and S96 to SBLV was controlled by a single semidominant locus. We have designated this locus SSB1 (symptom development by SBLV infection). By using genetic markers, SSB1 was mapped to chromosome IV. The patterns of distribution and accumulation of SBLV in sensitive accessions were similar to those in the insensitive accessions. In addition, symptom development in S96 by SBLV infection was critically interrupted by the presence of the NahG gene, which encodes salicylic acid (SA) hydroxylase. These data suggest that symptom development in A. thaliana controlled by SSB1 is independent of the efficiency of SBLV multiplication and is dependent on SA signaling.
Collapse
Affiliation(s)
- Koki Fujisaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Takeda A, Kaido M, Okuno T, Mise K. The C terminus of the movement protein of Brome mosaic virus controls the requirement for coat protein in cell-to-cell movement and plays a role in long-distance movement. J Gen Virol 2004; 85:1751-1761. [PMID: 15166461 DOI: 10.1099/vir.0.79976-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3a movement protein (MP) plays a central role in the movement of Brome mosaic virus (BMV). To identify the functional regions in BMV MP, 24 alanine-scanning (AS) MP mutants of BMV were constructed. Infectivity of the AS mutants in the host plant Chenopodium quinoa showed that the central region of BMV MP is important for viral movement and both termini of BMV MP have effects on the development of systemic symptoms. A green-fluorescent-protein-expressing RNA3-based BMV vector containing a 2A sequence from Foot-and-mouth disease virus was also constructed. Using this vector, two AS mutants that showed more efficient cell-to-cell movement than wild-type BMV were identified. The MPs of these two AS mutants, which have mutations at their C termini, mediated cell-to-cell movement independently of coat protein (CP), unlike wild-type BMV MP. Furthermore, a BMV mutant with a truncation in the C-terminal 42 amino acids of MP was also able to move from cell to cell without CP, but did not move systemically, even in the presence of CP. These results and an encapsidation analysis suggest that the C terminus of BMV MP is involved in the requirement for CP in cell-to-cell movement and plays a role in long-distance movement. Furthermore, the ability to spread locally and form virions is not sufficient for the long-distance movement of BMV. The roles of MP and CP in BMV movement are discussed.
Collapse
Affiliation(s)
- Atsushi Takeda
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Iwamoto T, Okinaka Y, Mise K, Mori KI, Arimoto M, Okuno T, Nakai T. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 2004; 78:1256-62. [PMID: 14722280 PMCID: PMC321384 DOI: 10.1128/jvi.78.3.1256-1262.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Betanodaviruses, the causal agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNAs as genomes. The larger genomic segment, RNA1 (3.1 kb), encodes an RNA-dependent RNA polymerase, and the smaller genomic segment, RNA2 (1.4 kb), codes for the coat protein. Betanodaviruses have marked host specificity, although the primary structures of the viral RNAs and encoded proteins are similar among betanodaviruses. However, no mechanism underlying the host specificity has yet been reported. To evaluate viral factors that control host specificity, we first constructed a cDNA-mediated infectious RNA transcription system for sevenband grouper nervous necrosis virus (SGNNV) in addition to that for striped jack nervous necrosis virus (SJNNV), which was previously established by us. We then tested two reassortants between SJNNV and SGNNV for infectivity in the host fish from which they originated. When striped jack and sevenband grouper larvae were bath challenged with the reassortant virus comprising SJNNV RNA1 and SGNNV RNA2, sevenband groupers were killed exclusively, similar to inoculation with SGNNV. Conversely, inoculations with the reassortant virus comprising SGNNV RNA1 and SJNNV RNA2 killed striped jacks but did not affect sevenband groupers. Immunofluorescence microscopic studies using anti-SJNNV polyclonal antibodies revealed that both of the reassortants multiplied in the brains, spinal cords, and retinas of infected fish, similar to infections with parental virus inoculations. These results indicate that viral RNA2 and/or encoded coat protein controls host specificity in SJNNV and SGNNV.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Sea-Farming Association, Oita 879-2602, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Damayanti TA, Tsukaguchi S, Mise K, Okuno T. cis-acting elements required for efficient packaging of brome mosaic virus RNA3 in barley protoplasts. J Virol 2003; 77:9979-86. [PMID: 12941908 PMCID: PMC224592 DOI: 10.1128/jvi.77.18.9979-9986.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) is a positive-sense RNA plant virus, the tripartite genomic RNAs of which are separately packaged into virions. RNA3 is copackaged with subgenomic RNA4. In barley protoplasts coinoculated with RNA1 and RNA2, an RNA3 mutant with a 69-nucleotide (nt) deletion in the 3'-proximal region of the 3a open reading frame (ORF) was very poorly packaged compared with other RNA3 mutants and wild-type RNA3, despite their comparable accumulation in the absence of coat protein. Computer analysis of RNA secondary structure predicted two stem-loop (SL) structures (i.e., SL-I and SL-II) in the 69-nt region. Disruption of SL-II, but not of SL-I, significantly reduced RNA3 packaging. A chimeric BMV RNA3 (B3Cmp), with the BMV 3a ORF replacing that of cucumber mosaic virus (CMV), was packaged negligibly, whereas RNA4 was packaged efficiently. Replacement of the 3'-proximal region of the CMV 3a ORF in B3Cmp with the 3'-proximal region of the BMV 3a ORF significantly improved packaging efficiency, and the disruption of SL-II in the substituted BMV 3a ORF region greatly reduced packaging efficiency. These results suggest that the 3'-proximal region of the BMV 3a ORF, especially SL-II predicted between nt 904 and 933, plays an important role in the packaging of BMV RNA3 in vivo. Furthermore, the efficient packaging of RNA4 without RNA3 in B3Cmp-infected cells implies the presence of an element in the 3a ORF of BMV RNA3 that regulates the copackaging of RNA3 and RNA4.
Collapse
Affiliation(s)
- Tri Asmira Damayanti
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
16
|
Fujisaki K, Kaido M, Mise K, Okuno T. Use of Spring beauty latent virus to identify compatible interactions between bromovirus components required for virus infection. J Gen Virol 2003; 84:1367-1375. [PMID: 12771403 DOI: 10.1099/vir.0.19020-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spring beauty latent virus (SBLV) is a member of the genus Bromovirus, and is closely related to Brome mosaic virus (BMV) and Cowpea chlorotic mottle virus (CCMV). Compatible interactions between viral components are required for successful infection of plants by BMV and CCMV. To further our understanding of interactions between bromovirus components, we used SBLV to produce reassortants among the three bromoviruses. We found that SBLV RNA 2 functioned with heterologous bromovirus RNA 1 in infections of whole plants and protoplasts of Nicotiana benthamiana, although SBLV RNA 1 did not function with heterologous bromovirus RNA 2. A DNA-based transient assay for 1a and 2a proteins, which are encoded by RNAs 1 and 2, respectively further suggested that SBLV 2a protein may function in combination with heterologous bromovirus 1a protein. Moreover, analysis of the ability of reassortants to spread locally revealed that an RNA 2-mediated interaction between viral components may be required for efficient cell-to-cell movement of bromoviruses.
Collapse
Affiliation(s)
- Koki Fujisaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Okinaka Y, Mise K, Okuno T, Furusawa I. Characterization of a novel barley protein, HCP1, that interacts with the Brome mosaic virus coat protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:352-359. [PMID: 12744464 DOI: 10.1094/mpmi.2003.16.4.352] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brome mosaic virus (BMV) requires the coat protein (CP) not only for encapsidation but also for viral cell-to-cell and long-distance movement in barley plants. This suggests that BMV infection is controlled by interactions of CP with putative host factors as well as with viral components. To identify the host factors that interact with BMV CP, we screened a barley cDNA library containing 2.4 x 10(6) independent clones, using a yeast two-hybrid system. Using full-length and truncated BMV CPs as baits, four candidate cDNA clones were isolated. One of the candidate cDNAs encodes a unique oxidoreductase enzyme, designated HCP1. HCP1 was found predominantly in the soluble fractions after differential centrifugation of BMV-infected and mock-inoculated barley tissues. A two-hybrid binding assay using a series of truncated BMV CPs demonstrated that a C-terminal portion of CP is essential for its interaction with HCP1. Interestingly, experiments with CP mutants bearing single amino acid substitutions at the C-terminus revealed that the capacity for mutant CP-HCP1 binding correlates well with the infectivity of the corresponding mutant viruses in barley. These results indicate that CP-HCP1 binding controls BMV infection of barley, interacting directly with CP, probably in the cell cytoplasm.
Collapse
Affiliation(s)
- Yasushi Okinaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
18
|
Rubio L, Tian T, Yeh HH, Livieratos Y, Falk BW. De novo generation of Lettuce infectious yellows virus defective RNAs in protoplasts. MOLECULAR PLANT PATHOLOGY 2002; 3:321-327. [PMID: 20569340 DOI: 10.1046/j.1364-3703.2002.00125.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary Lettuce infectious yellows virus (LIYV)-infected plants contain a heterogeneous population of defective RNAs (D RNAs) derived from LIYV genomic RNA 2. To partly address how LIYV D RNAs are generated, in vitro synthesized transcripts corresponding to the LIYV genomic RNAs 1 and 2 were inoculated to protoplasts, and these were analysed for genomic and D RNAs. De novo generated D RNAs were readily detected by 48 h post-inoculation. Furthermore, when separate aliquots from the same protoplast preparation were separately inoculated with aliquots of the same LIYV RNA 1 and RNA 2 transcript preparations, different D RNA populations were detected in each. Thus, different D RNAs arose de novo within separate protoplast samples. Nucleotide sequence analysis of some de novo LIYV D RNAs revealed that they have a similar structure to the LIYV D RNAs described previously from whole plants, and to those of other plant viruses, consisting of one large internal deletion of the LIYV genomic RNA 2, but retaining 5' and 3' terminal sequences. However, one of the LIYV D RNAs had two non-contiguous internal deletions.
Collapse
Affiliation(s)
- Luis Rubio
- Department of Plant Pathology, 1 Shields Ave., University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
19
|
Damayanti TA, Nagano H, Mise K, Furusawa I, Okuno T. Positional effect of deletions on viability, especially on encapsidation, of Brome mosaic virus D-RNA in barley protoplasts. Virology 2002; 293:314-9. [PMID: 11886251 DOI: 10.1006/viro.2001.1276] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brome mosaic virus (BMV), a tripartite RNA plant virus, accumulates RNA3-derived defective RNAs (D-RNAs) in which 477-500 nucleotides (nt) are deleted in the central region of the 3a protein open reading frame (ORF), after prolonged infection in barley. In the present study, six artificial D-RNAs (AD-RNAs), having deletions of the same size as the naturally occurring D-RNA but at different positions in the 3a ORF, were constructed and tested for their amplification and encapsidation in barley protoplasts by coinoculation with BMV RNA1 and 2, or RNA1, 2, and 3. Northern blot analysis of RNA accumulation in total and virion fractions showed that deletions of 492 nt in the 3'-proximal and the 5'-proximal regions of the 3a ORF decreased encapsidation efficiency of the AD-RNAs compared with that of RNA3, whereas deletions in the central region enhanced encapsidation efficiency. The present results also show that deletion positions affect competition with RNA3 in the amplification and encapsidation of AD-RNAs.
Collapse
Affiliation(s)
- Tri Asmira Damayanti
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
20
|
Kao CC. Lessons learned from the core RNA promoters of Brome mosaic virus and Cucumber mosaic virus. MOLECULAR PLANT PATHOLOGY 2002; 3:53-59. [PMID: 20569308 DOI: 10.1046/j.1464-6722.2001.00090.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary RNA core promoters are nucleotide sequences needed to direct proper initiation of viral RNA synthesis by the viral replicase. Minimal length core promoter-templates that can direct accurate initiation of the genomic plus-, genomic minus-, and subgenomic RNAs of Brome mosaic virus and Cucumber mosaic virus were characterized in previous works. Several common themes and differences were observed in how each of the core promoters directed the initiation of viral RNA synthesis in vitro. These observations are summarized and compared in this short review.
Collapse
Affiliation(s)
- C Cheng Kao
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Iwamoto T, Mise K, Mori KI, Arimoto M, Nakai T, Okuno T. Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. J Gen Virol 2001; 82:2653-2662. [PMID: 11602777 DOI: 10.1099/0022-1317-82-11-2653] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A system has been established to produce infectious RNA transcripts for Striped jack nervous necrosis virus (SJNNV), the type species of the betanodaviruses, which infect fish. An enzymological analysis suggested that both RNA1 and RNA2 of SJNNV have a 5' cap. Both RNAs were largely resistant to 3' polyadenylation and ligation, suggesting the presence of an interfering 3' structure, while a small quantity of viral RNAs were polyadenylated in vitro. The complete 5' and 3' non-coding sequences of both segments were determined using the rapid amplification of cDNA ends method. Based on the terminal sequences obtained, RT-PCR was carried out and plasmid clones containing full-length cDNA copies of both RNAs, positioned downstream of a T7 promoter, were constructed. These plasmids were cleaved at a unique restriction site just downstream of the 3' terminus of each SJNNV sequence and were transcribed in vitro into RNA with a cap structure analogue. A mixture of the transcripts was transfected into the fish cell line E-11. Using indirect immunofluorescence staining with anti-SJNNV serum, fluorescence was observed specifically in these transfected cells; this culture supernatant exhibited pathogenicity to striped jack larvae. Northern blot analysis of E-11 cells infected with the recombinant virus or SJNNV showed small RNA (ca. 0.4 kb) that was newly synthesized and corresponded to the 3'-terminal region of RNA1. Finally, the complete nucleotide sequences of these functional cDNAs (RNA1, 3107 nt; RNA2, 1421 nt) were determined. This is the first report of betanodavirus cDNA clones from which infectious genomic RNAs can be transcribed.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Faculty of Applied Biological Science, Hiroshima University, Higashihiroshima, 739-8528, Japan1
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan2
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Sea-Farming Association, Oita 879-2602, Japan3
| | - Misao Arimoto
- Kamiura Station, Japan Sea-Farming Association, Oita 879-2602, Japan3
| | - Toshihiro Nakai
- Faculty of Applied Biological Science, Hiroshima University, Higashihiroshima, 739-8528, Japan1
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan2
| |
Collapse
|
22
|
Yeh HH, Tian T, Medina V, Falk BW. Green fluorescent protein expression from recombinant lettuce infectious yellows virus-defective RNAs originating from RNA 2. Virology 2001; 289:54-62. [PMID: 11601917 DOI: 10.1006/viro.2001.1110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lettuce infectious yellows virus (LIYV) RNA 2 defective RNAs (D RNAs) were compared in protoplasts for their ability to replicate and to express the green fluorescent protein (GFP) from recombinant D RNA constructs. Initially four LIYV D RNAs of different genetic composition were compared, but only two (LIYV D RNA M5 and M18) replicated to high levels. Both of these contained at least two complete ORFs, one being the 3'-terminal ORF encoding P26. Northern hybridization analysis using probes corresponding to 3' regions of LIYV RNA 2 detected the P26 subgenomic RNA from protoplasts infected with LIYV RNAs 1 and 2 or protoplasts inoculated only with RNA 1 plus either the LIYV D RNA M5 or M18, suggesting that these LIYV D RNAs served as templates to generate the P26 subgenomic RNA. The GFP coding region was inserted as an in-frame insertion into the P26 coding region of the LIYV M5 and M18 D RNAs, yielding M5gfp and M18gfp. When transcripts of M5gfp and M18gfp were used to inoculate protoplasts, bright fluorescence was seen only when they were co-inoculated with LIYV RNA 1. The percentage of fluorescent protoplasts ranged from experiment to experiment, but was as high as 5.8%. Time course analyses showed that fluorescence was not detected before 48 h pi, and this correlated with the timing of LIYV RNA 2 and RNA 2 D RNA accumulation, but not with that of LIYV RNA 1.
Collapse
Affiliation(s)
- H H Yeh
- Department of Plant Pathology, 1 Shields Avenue, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
23
|
Knapp E, Dawson WO, Lewandowski DJ. Conundrum of the lack of defective RNAs (dRNAs) associated with tobamovirus Infections: dRNAs that can move are not replicated by the wild-type virus; dRNAs that are replicated by the wild-type virus do not move. J Virol 2001; 75:5518-25. [PMID: 11356959 PMCID: PMC114264 DOI: 10.1128/jvi.75.12.5518-5525.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Accepted: 03/20/2001] [Indexed: 11/20/2022] Open
Abstract
Two classes of artificially constructed defective RNAs (dRNAs) of Tobacco mosaic virus (TMV) were examined in planta with helper viruses that expressed one (183 kDa) or both (126 and 183 kDa) of the replicase-associated proteins. The first class of artificially constructed dRNAs had the helicase and polymerase (POL) domains deleted; the second had an intact 126-kDa protein open reading frame (ORF). Despite extremely high levels of replication in protoplasts, the first class of dRNAs did not accumulate in plants. The dRNAs with an intact 126-kDa protein ORF were replicated at moderate levels in protoplasts and in planta when supported by a TMV mutant that expressed the 183-kDa protein but not the 126-kDa protein (183F). These dRNAs were not supported by helper viruses expressing both replicase-associated proteins. De novo dRNAs were generated in plants infected by 183F but not in plants infected with virus with the wild-type replicase. These novel dRNAs each contained a new stop codon near the location of the wild-type stop codon for the 126-kDa protein and had most of the POL domain deleted. The fact that only dRNAs that contained a complete 126-kDa protein ORF moved systemically suggests that expression of a functional 126-kDa protein or the presence of certain sequences and/or structures within this ORF is required for movement of dRNAs. At least two factors may contribute to the lack of naturally occurring dRNAs in association with wild-type TMV infections: an inability of TMV to support dRNAs that can move in plants and the inability of dRNAs that can be replicated by TMV to move in plants.
Collapse
Affiliation(s)
- E Knapp
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | | | | |
Collapse
|
24
|
Qiu W, Scholthof KB. Defective interfering RNAs of a satellite virus. J Virol 2001; 75:5429-32. [PMID: 11333930 PMCID: PMC114954 DOI: 10.1128/jvi.75.11.5429-5432.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Accepted: 03/07/2001] [Indexed: 11/20/2022] Open
Abstract
Panicum mosaic virus (PMV) is a recently molecularly characterized RNA virus with the unique feature of supporting the replication of two subviral RNAs in a few species of the family Gramineae. The subviral agents include a satellite RNA (satRNA) that is devoid of a coding region and the unrelated satellite panicum mosaic virus (SPMV) that encodes its own capsid protein. Here we report the association of this complex with a new entity in the RNA world, a defective-interfering RNA (DI) of a satellite virus. The specificity of interactions governing this four-component viral system is illustrated by the ability of the SPMV DIs to strongly interfere with the accumulation of the parental SPMV. The SPMV DIs do not interfere with PMV satRNA, but they do slightly enhance the rate of spread and titer of PMV. The SPMV-derived DIs provide an additional avenue by which to investigate fundamental biological questions, including the evolution and interactions of infectious RNAs.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
25
|
Okinaka Y, Mise K, Suzuki E, Okuno T, Furusawa I. The C terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 2001; 75:5385-90. [PMID: 11333922 PMCID: PMC114946 DOI: 10.1128/jvi.75.11.5385-5390.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2000] [Accepted: 03/09/2001] [Indexed: 11/20/2022] Open
Abstract
To investigate the functional domains of the coat protein (CP; 189 amino acids) of Brome mosaic virus, a plant RNA virus, 19 alanine-scanning mutants were constructed and tested for their infectivity in barley and Nicotiana benthamiana. Despite its apparent normal replicative competence and CP production, the C-terminal mutant F184A produced no virions. Furthermore, virion-forming C-terminal mutants P178A and D182A failed to move from cell to cell in both plant species, and mutants D181A and V187A showed host-specific movement. These results indicate that the C-terminal region of CP plays some important roles in virus movement and encapsidation. The specificity of certain mutations for viral movement in two different plant species is evidence for the involvement of host-specific factors.
Collapse
Affiliation(s)
- Y Okinaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Sasaki N, Fujita Y, Mise K, Furusawa I. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost. Virology 2001; 279:47-57. [PMID: 11145888 DOI: 10.1006/viro.2000.0518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hybrid Cowpea chlorotic mottle virus (CCMV) [CCMV(B3a)] in which the CCMV 3a movement protein gene is replaced by the 3a (B3a) gene of Brome mosaic virus cannot infect cowpea systemically. Previously, analysis of RNA3 cDNA clones constructed from cowpea-adapted mutants derived from CCMV(B3a) revealed that a single codon change in the B3a gene allowed CCMV(B3a) to infect cowpea systemically. In this study, to extend the analysis of the CCMV(B3a) adaptation mechanism, we directly sequenced B3a gene RT-PCR products prepared from 28 cowpea plants in which cowpea-adapted mutants appeared, and found seven patterns of a codon change localized at five specific positions in the central region (Ser(118), Glu(132), Glu(138), Gln(178), and Ser(180)). All of the patterns involved an amino acid change to Lys or Arg. Mutational analysis of the B3a gene demonstrated that a single codon change resulting in either Lys or Arg at any of the five positions was sufficient for the adaptation of CCMV(B3a) to cowpea. In contrast, CCMV(B3a) variants with a codon change resulting in Lys or Arg at three other positions (137, 155, and 161) in the B3a gene not only showed lack of systemic infection of cowpea but also showed weakened initial cell-to-cell movement in the inoculated leaves and diminished B3a accumulation in protoplasts. These results suggest that adaptive changes in the B3a gene are site-specifically selected in cowpea plants.
Collapse
Affiliation(s)
- N Sasaki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|
27
|
Ishikawa M, Janda M, Ahlquist P. The 3a cell-to-cell movement gene is dispensable for cell-to-cell transmission of brome mosaic virus RNA replicons in yeast but retained over 10(45)-fold amplification. J Gen Virol 2000; 81:2307-2311. [PMID: 10950990 DOI: 10.1099/0022-1317-81-9-2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast expressing the RNA replication proteins encoded by brome mosaic virus (BMV), B3URA3, a BMV RNA3 derivative that harbours the 3a cell-to-cell movement protein gene and the yeast uracil biosynthesis gene URA3, was replicated and maintained in 85-95% of progeny at each cell division. Transmission of the B3URA3 RNA replicon from mother to daughter yeast did not require the 3a gene. Nevertheless, even after passaging for 165 cycles of RNA replication and yeast cell division, each of 40 independent Ura(+) colonies tested retained B3URA3 RNAs whose electrophoretic mobilities and accumulation levels were indistinguishable from those of the original B3URA3. These and other results suggest that unselected genes in many positive-strand RNA virus replicons can be stably retained if the presence of the gene does not confer a selective disadvantage in RNA replication.
Collapse
Affiliation(s)
- Masayuki Ishikawa
- Institute for Molecular Virology1 and Howard Hughes Medical Institute2, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael Janda
- Institute for Molecular Virology1 and Howard Hughes Medical Institute2, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul Ahlquist
- Institute for Molecular Virology1 and Howard Hughes Medical Institute2, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
28
|
Rubio L, Yeh HH, Tian T, Falk BW. A heterogeneous population of defective RNAs is associated with lettuce infectious yellows virus. Virology 2000; 271:205-12. [PMID: 10814585 DOI: 10.1006/viro.2000.0318] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preparations of dsRNAs and virion RNAs extracted from Nicotiana clevelandii plants infected with the bipartite Lettuce infectious yellows virus (LIYV) were found to contain multiple LIYV RNA species. In addition to the two LIYV genomic RNAs, three types of RNAs were observed: (a) 3' coterminal subgenomic RNAs; (b) RNAs containing LIYV RNA 1 or RNA 2 5' terminus but lacking the 3' terminus; and (c) RNAs with both LIYV RNA 2 3' and 5' termini but each with a central extensive deletion, a structure typical of defective RNAs (D RNAs). No D RNA-like RNAs were detected for LIYV RNA 1. A reverse transcription followed by polymerase chain reaction (RT-PCR) strategy was used to clone from virion RNAs several LIYV RNA 2 D RNAs as cDNAs. Nucleotide sequence analysis of 43 cloned cDNAs showed in some D RNAs the presence of a stretch of 1-5 nt in the junction site that is repeated in the genomic RNA 2 in the two positions flanking the junction site or in close proximity. Some D RNAs contained in the junction site one or several extra nucleotides not present in the LIYV genomic RNA 2. Two of the cloned cDNAs were used to generate in vitro transcripts, and infectivity studies showed that both D RNAs were replication competent in protoplasts when coinoculated with LIYV RNAs 1 and 2 or with only LIYV RNA1. Neither D RNA showed obvious effects upon LIYV RNA 1 and RNA 2 accumulation in coinfected protoplasts. These data suggest that LIYV infections contain a heterogeneous population of LIYV RNA 2 D RNAs, and some are encapsidated into virions.
Collapse
Affiliation(s)
- L Rubio
- Department of Plant Pathology, University of California, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
29
|
Makinen K, Generozov E, Arshava N, Kaloshin A, Morozov S, Zavriev S. Detection and characterization of defective interfering RNAs associated with the cocksfoot mottle sobemovirus. Mol Biol 2000. [DOI: 10.1007/bf02759654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Kao CC, Sivakumaran K. Brome mosaic virus, good for an RNA virologist's basic needs. MOLECULAR PLANT PATHOLOGY 2000; 1:91-97. [PMID: 20572956 DOI: 10.1046/j.1364-3703.2000.00017.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Taxonomic relationship: Type member of the Bromovirus genus, family Bromoviridae. A member of the alphavirus-like supergroup of positive-sense single-stranded RNA viruses. Physical properties: Virions are nonenveloped icosahedrals made up of 180 coat protein subunits (Fig. 1). The particles are 26 nm in diameter and contain 22% nucleic acid and 78% protein. The BMV genome is composed of three positive-sense, capped RNAs: RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb) (Fig. 2). Viral proteins: RNA1 encodes protein 1a, containing capping and putative RNA helicase activities. RNA2 encodes protein 2a, a putative RNA-dependent RNA polymerase. RNA3 codes for two proteins: 3a, which is required for cell-to-cell movement, and the capsid protein. The capsid is translated from a subgenomic RNA, RNA4 (1.2 kb). Hosts: Monocots in the Poacea family, including Bromus inermis, Zea mays and Hordeum vulgare, in which BMV causes brown streaks. BMV can also infect the dicots Nicotiana benthamiana and several Chenopodium species. In N. benthamiana, the infection is asymptomatic while infection of Chenopodium can cause either necrotic or chlorotic lesions. Useful website:http://www4.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/10030001.htm.
Collapse
Affiliation(s)
- C C Kao
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|