1
|
Susta L, He Y, Hutcheson JM, Lu Y, West FD, Stice SL, Yu P, Abdo Z, Afonso CL. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection. Virol J 2016; 13:205. [PMID: 27919263 PMCID: PMC5139146 DOI: 10.1186/s12985-016-0659-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV-caused disease. Induced pluripotent stem cell (iPSC) technology allows adult cells to be reprogrammed into an embryonic stem cell-like state capable of contributing to live offspring and passing on unique traits in a number of species. Recently, iPSC approaches have been successfully applied to avian cells. If chicken induced pluripotent stem cells (ciPSCs) are genetically or epigenetically modified to resist NDV infection, it may be possible to generate ND resistant poultry. There is limited information on the potential of ciPSCs to be infected by NDV, or the capacity of these cells to become resistant to infection. The aim of the present work was to assess the characteristics of the interaction between NDV and ciPSCs, and to develop a selection method that would increase tolerance of these cells to NDV-induced cellular damage. Results Results showed that ciPSCs were permissive to infection with NDV, and susceptible to virus-mediated cell death. Since ciPSCs that survived infection demonstrated the ability to recover quickly, we devised a system to select surviving cells through multiple infection rounds with NDV. ciPSCs that sustained 9 consecutive infections had a statistically significant increase in survival (up to 36 times) compared to never-infected ciPSCs upon NDV infection (tolerant cells). Increased survival was not caused by a loss of permissiveness to NDV replication. RNA sequencing followed by enrichment pathway analysis showed that numerous metabolic pathways where differentially regulated between tolerant and never-infected ciPSCs. Conclusions Results demonstrate that ciPSCs are permissive to NDV infection and become increasingly tolerant to NDV under selective pressure, indicating that this system could be applied to study mechanisms of cellular tolerance to NDV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0659-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Susta
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA. .,Present address: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2 W1, Canada.
| | - Ying He
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Present address: College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 53004, China
| | - Jessica M Hutcheson
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Yangqing Lu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Claudio L Afonso
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA
| |
Collapse
|
2
|
Yuan L, Wu R, Liu H, Wen X, Huang X, Wen Y, Ma X, Yan Q, Huang Y, Zhao Q, Cao S. Tissue tropism and molecular characterization of a Japanese encephalitis virus strain isolated from pigs in southwest China. Virus Res 2016; 215:55-64. [DOI: 10.1016/j.virusres.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
3
|
Lipton HL, Kumar ASM, Hertzler S, Reddi HV. Differential usage of carbohydrate co-receptors influences cellular tropism of Theiler's murine encephalomyelitis virus infection of the central nervous system. Glycoconj J 2006; 23:39-49. [PMID: 16575521 DOI: 10.1007/s10719-006-5436-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theiler's murine encephalomyelitis viruses (TMEV) are ubiquitous pathogens of mice, producing either rapidly fatal encephalitis (high-neurovirulence strains) or persistent central nervous system infection and inflammatory demyelination (low-neurovirulence strains). Although a protein entry receptor has not yet been identified, carbohydrate co-receptors that effect docking and concentration of the virus on the cell surface are known for both TMEV neurovirulence groups. Low-neurovirulence TMEV use alpha2,3-linked N-acetylneuramic acid (sialic acid) on an N-linked glycoprotein, whereas high-neurovirulence TMEV use the proteoglycan heparan sulfate (HS) as a co-receptor. While the binding of low-neurovirulence TMEV to sialic acid can be inhibited completely, only a third of the binding of high-neurovirulence TMEV to HS is inhibitable, suggesting that high-neurovirulence strains use another co-receptor or bind directly to the putative protein entry receptor. Four amino acids on the surface (VP2 puff B) of low-neurovirulence strains make contact with sialic acid through non-covalent hydrogen bonds. Since these virus residues are conserved in all TMEV strains, the capsid conformation of this region is probably responsible for sialic acid binding. A persistence determinant that maps within the virus coat using recombinant TMEV is also conformational in nature. Low-neurovirulence virus variants that do not bind to sialic acid fail to persist in the central nervous system of mice, indicating a role for sialic acid binding in TMEV persistence. Analysis of high-neurovirulence variants that do not bind HS demonstrates that HS co-receptor usage influences neuronal tropism in brain, whereas, the HS co-receptor use is not required for the infection of spinal cord anterior horn cells associated with poliomyelitis.
Collapse
Affiliation(s)
- Howard L Lipton
- Department of Neurology and Microbiology-Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| | | | | | | |
Collapse
|
4
|
Libbey JE, Tsunoda I, Fujinami RS. Altered cell growth and morphology in a BHK-21 cell mutant that lacks a receptor for Theiler's murine encephalomyelitis virus. Virology 2002; 294:85-93. [PMID: 11886268 DOI: 10.1006/viro.2001.1312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptor for Theiler's murine encephalomyelitis virus (TMEV) remains unknown. In vitro, BHK-21 cells are permissive to infection by TMEV. Selecting mutants of BHK-21 cells produced a cell line (BHKR-) resistant to infection by TMEV. Viral persistence was ruled out by immunofluorescent staining for viral antigens. BHKR- cells were nonpermissive to infection even at high multiplicities of infection. In contrast, cells were able to support one round of virus replication when transfected with infectious TMEV RNA. Binding studies indicated that TMEV was unable to attach to these cells. These data are consistent with the BHKR- cells lacking a receptor for TMEV. Interestingly, BHKR- cells were larger in size and had a significant lag in growth after subculture versus BHK-21 cells. This suggests that the TMEV receptor on BHK-21 cells could play an important role in cell growth and morphology under physiologic conditions. BHKR- cells should facilitate the search for TMEV receptors.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Neurology, University of Utah School of Medicine, 30 N 1900 E, Room 3R330, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
5
|
Hertzler S, Kallio P, Lipton HL. UDP-galactose transporter is required for Theiler's virus entry into mammalian cells. Virology 2001; 286:336-44. [PMID: 11485401 DOI: 10.1006/viro.2001.0981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theiler's murine encephalomyelitis viruses (TMEV) are divided into two groups: high-neurovirulence strains, such as GDVII, cause fatal encephalitis, while low-neurovirulence strains, such as BeAn and DA, cause persistent infection and demyelination in mice. Cell surface sialic acid is bound by the low-neurovirulence DA and BeAn viruses, but not by the high-neurovirulence GDVII virus. We have identified a clone from a BHK-21 cell cDNA library that mediates TMEV entry and infection by viruses of both TMEV groups in a receptor-negative BHK-21 cell variant (R26). The sequence of this clone is 96.4% identical to the human UDP-galactose transporter (UGT), which belongs to a family of nucleotide-sugar transporter proteins involved in the biosynthesis of complex carbohydrate structures in the trans-Golgi network. UGT mRNA from R26 cells was found to have a 490-nucleotide deletion involving the C-terminal amino acids 255 to 392 and 81 nucleotides of the 3' noncoding region. These results suggest two possibilities by which UGT may mediate TMEV entry and infection. The most likely one relates to the transporter function of adding galactose to another receptor protein. This possibility suggests the requirement for a specific glycoprotein interaction for GDVII virus cell binding and entry, e.g., galactose for GDVII and sialic acid for BeAn. Alternatively, UGT might be a TMEV receptor itself, acting via UGT cycling to the cell surface.
Collapse
Affiliation(s)
- S Hertzler
- Integrated Graduate Program, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | |
Collapse
|