1
|
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3' ends. Genes Dev 2015. [PMID: 26220997 PMCID: PMC4526738 DOI: 10.1101/gad.266973.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, Xie et al. identify a novel Integrator cleavage step in a noncanonical microRNA (miRNA) biogenesis pathway. They found that this cleavage step occurs at the 3′ ends of HVS pre-miRNAs, which is regulated by a specific 3′ end processing signal, the miRNA 3′ box. The findings here provide further insight into the structure and function of the Integrator complex. Herpesvirus saimiri (HVS) is an oncogenic γ-herpesvirus that produces microRNAs (miRNAs) by cotranscription of precursor miRNA (pre-miRNA) hairpins immediately downstream from viral small nuclear RNAs (snRNA). The host cell Integrator complex, which recognizes the snRNA 3′ end processing signal (3′ box), generates the 5′ ends of HVS pre-miRNA hairpins. Here, we identify a novel 3′ box-like sequence (miRNA 3′ box) downstream from HVS pre-miRNAs that is essential for miRNA biogenesis. In vivo knockdown and rescue experiments confirmed that the 3′ end processing of HVS pre-miRNAs also depends on Integrator activity. Interaction between Integrator and HVS primary miRNA (pri-miRNA) substrates that contain only the miRNA 3′ box was confirmed by coimmunoprecipitation and an in situ proximity ligation assay (PLA) that we developed to localize specific transient RNA–protein interactions inside cells. Surprisingly, in contrast to snRNA 3′ end processing, HVS pre-miRNA 3′ end processing by Integrator can be uncoupled from transcription, enabling new approaches to study Integrator enzymology.
Collapse
Affiliation(s)
- Mingyi Xie
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Wei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Acer Xu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Diana A Lenis
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Daniel DiMaio
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
2
|
Species restriction of Herpesvirus saimiri and Herpesvirus ateles: Human lymphocyte transformation correlates with distinct signaling properties of viral oncoproteins. Virus Res 2012; 165:179-89. [DOI: 10.1016/j.virusres.2012.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 01/05/2023]
|
3
|
Heck E, Friedrich U, Gack MU, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Ensser A, Biesinger B. Growth transformation of human T cells by herpesvirus saimiri requires multiple Tip-Lck interaction motifs. J Virol 2006; 80:9934-42. [PMID: 17005671 PMCID: PMC1617286 DOI: 10.1128/jvi.01112-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
5
|
Albrecht JC, Müller-Fleckenstein I, Schmidt M, Fleckenstein B, Biesinger B. Tyrosine phosphorylation of the Tio oncoprotein is essential for transformation of primary human T cells. J Virol 2005; 79:10507-13. [PMID: 16051843 PMCID: PMC1182665 DOI: 10.1128/jvi.79.16.10507-10513.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase.
Collapse
Affiliation(s)
- Jens-Christian Albrecht
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
6
|
Abstract
gamma2-Herpesviruses, also termed rhadinoviruses, have long been known as animal pathogens causing lymphoproliferative diseases such as malignant catarrhal fever in cattle or T-cell lymphoma in certain Neotropical primates. The rhadinovirus prototype is Herpesvirus saimiri (HVS), a T-lymphotropic agent of squirrel monkeys (Saimiri sciureus); Herpesvirus ateles (HVA) is closely related to HVS. The first human rhadinovirus, human herpesvirus type 8 (HHV-8), was discovered a decade ago in Kaposi's sarcoma (KS) biopsies. It was found to be strongly associated with all forms of KS, as well as with multicentric Castleman's disease and primary effusion lymphoma (PEL). Since DNA of this virus is regularly found in all KS forms, and specifically in the spindle cells of KS, it was also termed KS-associated herpesvirus (KSHV). Several simian rhadinoviruses related to KSHV have been discovered in various Old World primates, though they seem only loosely associated with pathogenicity or tumor induction. In contrast, HVS and HVA cause T-cell lymphoma in numerous non-natural primate hosts; HVS strains of the subgroup C are capable of transforming human and simian T-lymphocytes to continuous growth in cell culture and can provide useful tools for T-cell immunology or gene transfer. Here, we describe their natural history, genome structure, biology, and pathogenesis in T-cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
7
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Albrecht JC, Biesinger B, Müller-Fleckenstein I, Lengenfelder D, Schmidt M, Fleckenstein B, Ensser A. Herpesvirus ateles Tio can replace herpesvirus saimiri StpC and Tip oncoproteins in growth transformation of monkey and human T cells. J Virol 2004; 78:9814-9. [PMID: 15331715 PMCID: PMC514998 DOI: 10.1128/jvi.78.18.9814-9819.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpesvirus saimiri group C strains are capable of transforming human and simian T-lymphocyte populations to permanent antigen-independent growth. Two viral oncoproteins, StpC and Tip, that are encoded by a single bicistronic mRNA, act in concert to mediate this phenotype. A closely related New World monkey herpesvirus, herpesvirus ateles, transcribes a single spliced mRNA at an equivalent genome locus. The encoded protein, Tio, has sequence homologies to both StpC and Tip. We inserted the tio sequence of herpesvirus ateles strain 73 into a recombinant herpesvirus saimiri C488 lacking its own stpC/tip oncogene. Simian as well as human T lymphocytes were growth transformed by the chimeric Tio-expressing viruses. Thus, a single herpesvirus protein appears to be responsible for the oncogenic effects of herpesvirus ateles.
Collapse
Affiliation(s)
- Jens-Christian Albrecht
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 2003; 314:471-87. [PMID: 14554077 DOI: 10.1016/s0042-6822(03)00449-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpesvirus saimiri (HVS), the rhadinovirus prototype, is apathogenic in the persistently infected natural host, the squirrel monkey, but causes acute T cell leukemia in other New World primate species. In contrast to subgroups A and B, only strains of HVS subgroup C such as C488 are capable of transforming primary human T cells to stable antigen-independent growth in culture. Here, we report the complete 155-kb genome sequence of the transformation-competent HVS strain C488. The A+T-rich unique L-DNA of 113,027 bp encodes at least 77 open reading frames and 5 URNAs. In addition to the viral oncogenes stp and tip, only a few genes including the transactivator orf50 and the glycoprotein orf51 are highly divergent. In a series of new primary HVS isolates, the subgroup-specific divergence of the orf50/orf51 alleles was studied. In these new isolates, the orf50/orf51 alleles of the respective subgroup segregate with the stp and/or tip oncogene alleles, which are essential for transformation.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Reiss C, Niedobitek G, Hör S, Lisner R, Friedrich U, Bodemer W, Biesinger B. Peripheral T-cell lymphoma in herpesvirus saimiri-infected tamarins: tumor cell lines reveal subgroup-specific differences. Virology 2002; 294:31-46. [PMID: 11886263 DOI: 10.1006/viro.2001.1304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficiency of lymphoma induction by herpesvirus saimiri (HVS) isolates correlates with the genetically defined viral subgroups A, B, and C. To compare subgroup-specific effects, highly susceptible tamarins were infected with HVS strain A-11, B-SMHI, or C-488. All animals developed T-cell lymphomas indistinguishable with respect to clinical, pathological, and virological parameters. Ex vivo T-cell lines were established readily from the HVS C-488 animal, less efficiently in the presence of HVS A-11, and from only a single HVS B-SMHI sample. These cultivated cells revealed strain-specific biochemical characteristics. HVS A-11 strongly induced the expression of tyrosine kinase Lyn. HVS C-488 led to the activation of STAT3, which is most likely linked to the association of virus-encoded Tip with tyrosine kinase Lck. The lack of these activities in HVS B-SMHI-transformed cells may correlate with the reduced oncogenic phenotype of this virus in species other than tamarins.
Collapse
Affiliation(s)
- Christine Reiss
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|