1
|
Denesvre C, You Y, Rémy S, Vychodil T, Courvoisier K, Penzes Z, Bertzbach LD, Kheimar A, Kaufer BB. Impact of viral telomeric repeat sequences on herpesvirus vector vaccine integration and persistence. PLoS Pathog 2024; 20:e1012261. [PMID: 38805555 PMCID: PMC11161090 DOI: 10.1371/journal.ppat.1012261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.
Collapse
Affiliation(s)
- Caroline Denesvre
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Yu You
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Sylvie Rémy
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Tereza Vychodil
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Katia Courvoisier
- INRAE, UMR1282 ISP, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Zoltán Penzes
- Ceva Santé Animale, Ceva-Phylaxia, Budapest, Hungary
| | - Luca D. Bertzbach
- Leibniz Institute of Virology (LIV), Department of Viral Transformation, Hamburg, Germany
| | - Ahmed Kheimar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
3
|
Du X, Zhou D, Zhou J, Xue J, Wang G, Cheng Z. Marek’s disease virus serine/threonine kinase Us3 facilitates viral replication by targeting IRF7 to block IFN-β production. Vet Microbiol 2022; 266:109364. [DOI: 10.1016/j.vetmic.2022.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
4
|
Venugopalan A, Griffin MJ, Wise DJ, White D, Ford L, López-Porras A, Camus AC, Hanson LA. Virulence and immunogenicity of blue catfish alloherpesvirus in channel, blue and blue × channel hybrid catfish. JOURNAL OF FISH DISEASES 2021; 44:1399-1409. [PMID: 34028055 DOI: 10.1111/jfd.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Blue catfish alloherpesvirus (BCAHV) is a novel virus isolated from the blue catfish (Ictalurus furcatus). To date, the ultrastructure, virulence and immunogenicity of BCAHV have not been reported. Given the importance of blue catfish in producing channel ♀ (I. punctatus) × ♂ blue (I. furcatus) catfish hybrids and the increasing demand for hybrid catfish in the US catfish industry, the susceptibility of blue, channel and hybrid catfish to BCAHV was assessed. Further, the cross-protective potential of BCAHV against Ictalurid herpesvirus 1 (IcHV1) was investigated in channel and hybrid catfish that survive BCAHV exposure. Neutralization assays revealed BCAHV is refractive (neutralization index [NI] = 0) to anti-IcHV1 monoclonal antibody Mab 95, compared to IcHV1 (NI = 1.8). Exposure of blue catfish fingerling to 1.3 × 105 TCID50 /L BCAHV produced cumulative mortality of 51.67 ± 0.70% and pathologic changes similar to those of channel catfish virus disease. No mortality was observed in channel or hybrid catfish. Twenty-eight days post-challenge, surviving channel and hybrid catfish were exposed to 9.4 × 104 TCID50 /L IcHV1 (LC50 dose), resulting in 100% relative per cent survival compared to naïve cohorts. These data provide baseline information for BCAHV and lay the groundwork for future studies. Data also identify BCAHV as a potential vaccine candidate against IcHV1. Based on host range and immunogenicity evaluations, in addition to genome sequence data from previous studies, BCAHV should be given consideration as a new species of Ictalurivirus.
Collapse
Affiliation(s)
- Arun Venugopalan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS, USA
| | - Danielle' White
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Lorelei Ford
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Adrián López-Porras
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Mississippi State, MS, USA
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Larry A Hanson
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
5
|
Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition. J Virol 2020; 94:JVI.02049-19. [PMID: 32161176 PMCID: PMC7199394 DOI: 10.1128/jvi.02049-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-ΔvNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-ΔvNr-13 showed similar growth kinetics; however, at early time points, HVT-ΔvNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-ΔvNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek's disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.
Collapse
|
6
|
Dunn JR, Dimitrov KM, Miller PJ, Garcia M, Turner-Alston K, Brown A, Hartman A. Evaluation of Protective Efficacy When Combining Turkey Herpesvirus-Vector Vaccines. Avian Dis 2020; 63:75-83. [PMID: 31251522 DOI: 10.1637/11979-092818-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
Turkey herpesvirus (HVT) is widely used as a vaccine against Marek's disease in chickens and recently as a vector for foreign genes from infectious bursal disease virus, Newcastle disease (ND) virus, infectious laryngotracheitis (ILT) virus, and avian influenza virus. Advantages of HVT-vector vaccines are that the vaccines do not contain live respiratory viruses or live infectious bursal disease virus able to replicate and cause disease or embryo mortality, they can be administered at hatch or in ovo, and they are relatively insensitive to interference from maternally derived antibodies. As producers have tried to combine HVT-vector vaccines to protect against additional diseases, reports have indicated that applying two vectored vaccines using the same HVT vector is reported to reduce the efficacy of one or both vaccines. To confirm this interference, we evaluated commercial vaccines from multiple companies, including products with inserts designed to protect against ND, infectious ILT, and infectious bursal disease (IBD). Using a standard dosage, we found that the ILT product was most severely affected by the addition of other vaccines, as demonstrated by a significant increase in clinical signs, significant decrease in weight gain, and increase in quantity of challenge virus observed from tracheal swabs collected from Days 3-5 postchallenge. The ND and IBD products were also affected by the addition of other vaccines, although in most cases differences compared to vaccination with the vector alone were not statistically significant. This study demonstrates the importance of following manufacturer guidelines and the need for validating alternative strategies to benefit from the high level of protection offered by vector vaccines.
Collapse
Affiliation(s)
- John R Dunn
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823,
| | - Kiril M Dimitrov
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| | - Patti J Miller
- USDA, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30605
| | - Maricarmen Garcia
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | |
Collapse
|
7
|
Sun P, Cui N, Liu L, Su S, Cheng Z, Chen R, Li Y, Cui Z. Attenuation of a recombinant Marek's disease virus lacking the meq oncogene and evaluation on its immune efficacy against Marek's disease virus. Poult Sci 2020; 99:1939-1945. [PMID: 32241474 PMCID: PMC7587640 DOI: 10.1016/j.psj.2019.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022] Open
Abstract
SC9-2 is a recombinant Marek's disease virus (MDV) strain lacking the meq oncogene. Previous study demonstrated that SC9-2 virus provides good protection against challenge with a very virulent MDV rMd5, but it induces immunosuppressive effects in specific pathogen-free (SPF) chickens. In the present study, SC9-2 was serially passaged on chicken embryo fibroblast (CEF) cell cultures. The pathogenicity and immune efficacy of SC9-2/10th and SC9-2/40th against rMd5 were evaluated. Animal experimental results showed that SC9-2/10th and SC9-2/40th showed no lethality or tumorigenicity in SPF chickens. Body weight of chickens inoculated with SC9-2/40th were significantly higher than that of the chickens inoculated with SC9-2/10th but lower than that of the uninoculated controls. The severity of bursa and thymus atrophy (BTA) and spleen enlargement in SC9-2/40th-inoculated chickens were also weaker than the SC9-2/10th-inoculated ones but stronger than the uninoculated controls. Chickens inoculated with SC9-2/40th and SC9-2/10th showed similar antibody levels induced by H9N2 subtype avian influenza virus/Newcastle disease virus inactivated vaccines, both of which were lower than the uninoculated controls. Replication of SC9-2/40th was significantly lower than SC9-2/10th in feather follicle epithelium (FFE) of infected chickens. The immune protection index of SC9-2/40th was also lower than that of SC9-2/10th, but the difference was not significantly, and both of which were significant higher than that of the commercial MDV vaccine CVI988/Rispens. The results of our studies demonstrated that SC9-2/40th showed weaker severity of BTA, spleen enlargement, and body weight loss and lower replication level in FFE than SC9-2/10th in SPF chickens. However, SC9-2/40th was able to confer better immune protection as compared with CVI988/Rispens vaccination in SPF chickens. In conclusion, serially attenuation of SC9-2 in CEFs reduced the lymphoid organ atrophy and replication in SPF chickens, and the immune protective efficacy of attenuated viruses was still superior than CVI988/Rispens.
Collapse
Affiliation(s)
- Peng Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Cui
- Shandong Key Laboratory of Animal Disease Control & Breeding; Institute of Animal Husbandry and Veterinary, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Linqing Liu
- China Animal Disease Control Center, Beijing, 100125 China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Ziqiang Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yanpeng Li
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong 526238, China
| | - Zhizhong Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
8
|
McPherson MC, Cheng HH, Smith JM, Delany ME. Vaccination and Host Marek's Disease-Resistance Genotype Significantly Reduce Oncogenic Gallid alphaherpesvirus 2 Telomere Integration in Host Birds. Cytogenet Genome Res 2018; 156:204-214. [PMID: 30572327 PMCID: PMC7448376 DOI: 10.1159/000495174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 01/20/2023] Open
Abstract
Marek's disease (MD) is an infectious disease characterized by lymphomas and high mortality in susceptible chickens. The causative and ubiquitous alpha-herpesvirus known as MD virus (MDV) integrates into host telomeres during early infection through latency, known to be an important phase for oncogenic transformation. Herein, we sought to determine the influence of vaccination and host genetics on the temporal dynamics of MDV-host genome interactions. We studied integration profiles using 2 MD vaccines that vary in protective efficacy in 2 genetic lines that differ in MD resistance/susceptibility. Virus integration of both oncogenic MDV and vaccine strains was observed in both MD susceptible and resistant birds, however, the lines differed in their dynamic telomere-integration profiles. Notably, the resistant host genotype exhibited a smaller percentage of replicating cells with the virus telomere-integrated only phenotype as compared to the susceptible genotype. Vaccination with Rispens, the most protective MD vaccine, also reduced the establishment of the virus telomere-integrated only phenotype, suggesting a significant role of the phenotype in MD lymphoma development. The effect of Rispens vaccination was most dramatic in the susceptible genotype. These results suggest important connections between vaccinal immunity, MDV telomere integration, virus-induced oncogenesis, and virus-host genome interactions in the context of host genetics and disease susceptibility.
Collapse
Affiliation(s)
- Marla C. McPherson
- Department of Animal Science, University of California, Davis, CA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Hans H. Cheng
- USDA, ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Justin M. Smith
- Department of Animal Science, University of California, Davis, CA
| | - Mary E. Delany
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
9
|
Marek's disease herpesvirus vaccines integrate into chicken host chromosomes yet lack a virus-host phenotype associated with oncogenic transformation. Vaccine 2016; 34:5554-5561. [PMID: 27720297 DOI: 10.1016/j.vaccine.2016.09.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 01/26/2023]
Abstract
Marek's disease (MD) is a lymphotropic and oncogenic disease of chickens that can lead to death in susceptible and unvaccinated host birds. The causative pathogen, MD virus (MDV), a highly oncogenic alphaherpesvirus, integrates into host genome near the telomeres. MD occurrence is controlled across the globe by biosecurity, selective breeding for enhanced MD genetic resistance, and widespread vaccination of flocks using attenuated serotype 1 MDV or other serotypes. Despite over 40 years of usage, the specific mechanism(s) of MD vaccine-related immunity and anti-tumor effects are not known. Here we investigated the cytogenetic interactions of commonly used MD vaccine strains of all three serotypes (HVT, SB-1, and Rispens) with the host to determine if all were equally capable of host genome integration. We also studied the dynamic profiles of chromosomal association and integration of the three vaccine strains, a first for MD vaccine research. Our cytogenetic data provide evidence that all three MD vaccine strains tested integrate in the chicken host genome as early as 1 day after vaccination similar to oncogenic strains. However, a specific, transformation-associated virus-host phenotype observed for oncogenic viruses is not established. Our results collectively provide an updated model of MD vaccine-host genome interaction and an improved understanding of the possible mechanisms of vaccinal immunity. Physical integration of the oncogenic MDV genome into host chromosomes along with cessation of viral replication appears to have joint signification in MDV's ability to induce oncogenic transformation. Whereas for MD vaccine serotypes, a sustained viral replication stage and lack of the chromosome-integrated only stage were shared traits during early infection.
Collapse
|
10
|
McPherson MC, Delany ME. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis. Poult Sci 2016; 95:412-29. [PMID: 26755654 PMCID: PMC4957504 DOI: 10.3382/ps/pev369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence--as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states.
Collapse
Affiliation(s)
- M C McPherson
- Department of Animal Science, University of California, Davis, CA 95616
| | - M E Delany
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
11
|
Identification of non-essential loci within the Meleagrid herpesvirus 1 genome. Virol J 2015; 12:130. [PMID: 26307059 PMCID: PMC4550065 DOI: 10.1186/s12985-015-0362-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. Methods Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. Results Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. Conclusions The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome. Electronic supplementary material The online version of this article (doi10.1186/s12985-015-0362-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Schat KA, Erb HN. Lack of evidence that avian oncogenic viruses are infectious for humans: a review. Avian Dis 2015; 58:345-58. [PMID: 25518427 DOI: 10.1637/10847-041514-review.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chickens may be infected with three different oncogenic viruses: avian leukosis virus (ALV), reticuloendotheliosis virus (REV), and Marek's disease herpesvirus (MDV). Several epidemiological studies have suggested a link between these viruses and different types of cancer in people working in poultry processing plants and with multiple sclerosis. In this article, we analyze the epidemiological evidence that these viruses are causative agents for human cancer, followed by description of the relevant key characteristics of ALV, REV, and MDV. Finally, we discuss the biological evidence or lack thereof that avian tumor viruses are involved in the etiology of human cancer and multiple sclerosis (MS). The recent primary epidemiologic articles that we reviewed as examples were only hypothesis-generating studies examining massive numbers of risk factors for associations with various imprecise, non-viral-specific outcomes. The studies lacked precise evidence of exposure to the relevant viruses and the statistical methods failed to adjust for the large risks of false-positive claims. ALV subgroups A-D and J have been eradicated in the United States from the pure lines down to the parent stocks by the breeder companies, which have greatly reduced the incidence of infection in layer flocks and broilers. As a consequence, potential exposure of humans to these viruses has greatly diminished. Infection of humans working in processing plants with ALV-A and ALV-B is unlikely, because broilers are generally resistant to infection with these two subgroups. Moreover, these viruses enter cells by specific receptors present on chicken, but not on mammalian, cells. Infection of mammalian cell cultures or animals with ALV-A, ALV-B, and ALV-J has not been reported. Moreover, humans vaccinated with exogenous or endogenous ALV-contaminated vaccines against yellow fever, measles, and mumps did not become antibody- or virus-positive for ALV. The risks for human infection with REV are similarly limited. First of all, REV also has been eradicated from pure lines down to parent stock by breeder companies in the United States. Broilers can still become infected with REV through infection with fowl pox virus containing REV. However, there is no indication that REV can infect human cells. Low levels of antibodies to ALV and REV in human sera have been reported by a few groups. Absorption of sera with chicken antigens reduced the antibody titers, and there was no clear association with contacts with poultry. Possible cross-reactions with human endogenous or exogenous retroviruses were not considered in these publications. MDV is typically associated with infection of chickens, and almost all experimental data show that MDV cannot infect mammalian cells or animals, including nonhuman primates. One study reports the presence of MDV gD DNA in human sera, but this finding could not be confirmed by another group. A Medline search of the term "gene expression in human cancers" was negative for publications with avian retroviruses or MDV. In conclusion, there is no indication that avian oncogenic viruses are involved in human cancer or MS or even able to infect and replicate in humans.
Collapse
|
13
|
Abstract
Subclinical immunosuppression in chickens is an important but often underestimated factor in the subsequent development of clinical disease. Immunosuppression can be caused by pathogens such as chicken infectious anemia virus, infectious bursal disease virus, reovirus, and some retroviruses (e.g., reticuloendotheliosis virus). Mycotoxins and stress, often caused by poor management practices, can also cause immunosuppression. The effects on the innate and acquired immune responses and the mechanisms by which mycotoxins, stress and infectious agents cause immunosuppression are discussed. Immunoevasion is a common ploy by which viruses neutralize or evade immune responses. DNA viruses such as herpesvirus and poxvirus have multiple genes, some of them host-derived, which interfere with effective innate or acquired immune responses. RNA viruses may escape acquired humoral and cellular immune responses by mutations in protective antigenic epitopes (e.g., avian influenza viruses), while accessory non-structural proteins or multi-functional structural proteins interfere with the interferon system (e.g., Newcastle disease virus).
Collapse
|
14
|
Woźniakowski G, Samorek-Salamonowicz E, Kozdruń W. Comparison of loop-mediated isothermal amplification and PCR for the detection and differentiation of Marek's disease virus serotypes 1, 2, and 3. Avian Dis 2013; 57:539-43. [PMID: 23901773 DOI: 10.1637/10328-082012-resnote.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The previously conducted study on loop-mediated isothermal amplification (LAMP) has shown its usefulness for the detection of Marek's disease virus (MDV) virulent field strains. The current study improves the previously designed LAMP method with an additional pair of loop primers, which accelerates the reaction, and describes two other LAMP procedures for the specific detection of FC126 strain of turkey herpesvirus and nonpathogenic SB-1 strain. The developed LAMP procedures were also confirmed and compared with PCR. Each LAMP reaction used three pairs of specific primers designed to target the nucleotide sequence of the very virulent MDV strain, the SB-1 strain of MDV-2, and turkey herpesvirus, respectively. All LAMP reactions were flexible and provided reliable results at a wide range of incubation temperatures from 54.0 to 62.3 C in 15 to 90 min. LAMP does not need any thermocyclers, because all assays were conducted in a water bath. The green fluorescence signal was recorded under ultraviolet illumination in LAMP samples containing virulent MDV and turkey herpesvirus where SYBR Green was added to the reaction mixture, whereas the SB-1-positive samples presented orange illumination after GelRed staining solution. The sensitivity of the three LAMP reactions ranged from 2 log10 plaque-forming units (PFU)/ml of the virulent MDV HPRS-16 strain and turkey herpesvirus (HVT) to 3 log10 PFU/ml of the SB-1 nonpathogenic strain. The sensitivity of the compared PCR was lower by 1-2 log10 PFU/ml. The conducted studies have shown that developed LAMP methods may be used instead of PCR for the detection and differentiation of virulent and nonpathogenic MDV strains used in prophylaxis against MD. LAMP may be conducted without access to thermocyclers.
Collapse
Affiliation(s)
- Grzegorz Woźniakowski
- Department of Poultry Viral Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland.
| | | | | |
Collapse
|
15
|
Walkden-Brown SW, Islam AFA, Groves PJ, Rubite A, Sharpe SM, Burgess SK. Development, application, and results of routine monitoring of Marek's disease virus in broiler house dust using real-time quantitative PCR. Avian Dis 2013; 57:544-54. [PMID: 23901774 DOI: 10.1637/10380-92112-reg.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Results are presented from four studies between 2002 and 2011 into the feasibility of routinely monitoring Marek's disease virus serotype 1 (MDV-1) in broiler house dust using real-time quantitative PCR (qPCR) measurement. Study 1 on two farms showed that detection of MDV-1 occurred earlier on average in dust samples tested using qPCR than standard PCR and in spleen samples from five birds per shed assayed for MDV-1 by qPCR or standard PCR. DNA quality following extraction from dust had no effect on detection of MDV-1. Study 2 demonstrated that herpesvirus of turkeys (HVT) and MDV serotype 2 (MDV-2) in addition to MDV-1 could be readily amplified from commercial farm dust samples, often in mixtures. MDV-2 was detected in 11 of 20 samples despite the absence of vaccination with this serotype. Study 3 investigated the reproducibility and sensitivity of the qPCR test and the presence of inhibitors in the samples. Samples extracted and amplified in triplicate showed a high level of reproducibility except at very low levels of virus near the limit of detection. Mixing of samples prior to extraction provided results consistent with the proportions in the mixture. Tests for inhibition showed that if the template contained DNA in the range 0.5-20 ng/microl no inhibition of the reaction was detectable. The sensitivity of the tests in terms of viral copy number (VCN) per milligram of dust was calculated to be in the range 24-600 VCN/mg for MDV-1, 48-1200 VCN/mg for MDV-2, and 182-4560 VCN/mg for HVT. In study 4 the results of 1976 commercial tests carried out for one company were analyzed. Overall 23.1% of samples were positive for MDV-1, 26.1% in unvaccinated and 16.4% in vaccinated chickens. There was marked regional and temporal variation in the proportion of positive samples and the MDV-1 load. The tests were useful in formulating Marek's disease vaccination strategies. The number of samples submitted has increased recently, as has the incidence of positive samples. These studies provide strong evidence that detection and quantitation of MDV-1, HVT, and MDV-2 in poultry house dust using qPCR is robust, sensitive, reproducible, and meaningful, both biologically and commercially. Tactical vaccination based on monitoring of MDV-1 rather than routine vaccination may reduce selection pressure for increased virulence in MDV-1.
Collapse
Affiliation(s)
- Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|
17
|
Chien KY, Blackburn K, Liu HC, Goshe MB. Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus. J Proteome Res 2012; 11:5663-77. [PMID: 23106611 DOI: 10.1021/pr300471y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is an effective strategy to reduce the loss of chickens in the poultry industry caused by Marek's Disease (MD), an avian lymphoproliferative disease. The vaccines currently used are from attenuated serotype 1 Marek's disease virus (MDV) or naturally nononcogenic MDV strains. To prepare for future immunity breaks, functional genomic and proteomic studies have been used to better understand the underlying mechanisms of MDV pathogenicity and the effects induced by the vaccine viruses. In this study, a combined approach of quantitative GeLC-MSE and qualitative ERLIC/IMAC/LC-MS/MS analysis were used to identify abundance changes of proteins and the variations of phosphorylation status resulting from the perturbations due to infection with an attenuated oncogenic virus strain (Md11/75C) and several nononcogenic virus strains (CVI988, FC126 and 301B) in vitro. Using this combined approach, several signal transduction pathways mapped by the identified proteins were found to be altered at both the level of protein abundance and phosphorylation. On the basis of this study, a kinase-dependent pathway to regulate phosphorylation of 4E-BP1 to modulate assembly of the protein translation initiation complex was revealed. The differences of 4E-BP1 phosphorylation patterns as well as the measured abundance changes among several other proteins that regulate host transcriptional and translational activities across the virus strains used in this study provide new insight for future functional and biochemical characterization of specific proteins involved in MDV pathogenesis.
Collapse
Affiliation(s)
- Ko-yi Chien
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh North Carolina 27695, United States
| | | | | | | |
Collapse
|
18
|
Zhu H, Li H, Han Z, Shao Y, Wang Y, Kong X. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1. Virol J 2011; 8:156. [PMID: 21466705 PMCID: PMC3079670 DOI: 10.1186/1743-422x-8-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. RESULTS DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. CONCLUSIONS DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and most similar to the genus Mardivirus. The UL15 and/or UL15.5 accumulate(s) in the cytoplasm during early times post-infection and then are translocated to the nucleus at late times.
Collapse
Affiliation(s)
- Hongwei Zhu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
20
|
Chbab N, Egerer A, Veiga I, Jarosinski KW, Osterrieder N. Viral control of vTR expression is critical for efficient formation and dissemination of lymphoma induced by Marek's disease virus (MDV). Vet Res 2010; 41:56. [PMID: 20423696 PMCID: PMC2881417 DOI: 10.1051/vetres/2010026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/27/2010] [Indexed: 11/15/2022] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus that causes lethal T-cell lymphomas in chickens. MDV is unique in that it harbors two copies of a viral telomerase RNA subunit (vTR) in its genome exhibiting 88% sequence identity to the chicken orthologue, chTR. The minimal telomerase ribonucleoprotein complex consists of a protein subunit with reverse transcriptase activity (TERT) and TR. Physiologically, the complex compensates for the progressive telomere shortening that occurs during mitosis and is involved in the process of cellular immortalization. Previous studies showed that MDV vTR performes an auxiliary function during oncogenesis. Comparative in vitro analysis of the viral and chicken TR promoters revealed that the vTR promoter (PvTR) was up to 3-fold more efficient than the chTR promoter (PchTR) in avian cells and that the stronger transcriptional activity of PvTR resulted largely from an E-box located two nucleotides downstream of the transcriptional start site of the vTR gene. To test the hypothesis that PvTR is required for vTR expression and, hence, efficient tumor formation, we generated a recombinant virus, vPchTR+/+, in which the vTR promoter was replaced by that of chTR. In vivo, growth of vPchTR+/+ was indistinguishable from that of parental virus; however, tumor induction was reduced by >50% and lymphomas were smaller and less disseminated when compared to those induced by parental virus. We concluded that PvTR is not required for lytic replication in vivo but is essential for efficient transcription of vTR and thereby critical for efficient MDV lymphoma formation.
Collapse
Affiliation(s)
- Najat Chbab
- Institut für Virologie, Freie Universität Berlin, Philippstr. 13, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Barfoed AM, Østergaard E, Frandsen PL, Nielsen EB, Sandberg E, Rasmussen TB. Development of a primer-probe energy transfer based real-time PCR for detection of Marek's disease virus. J Virol Methods 2010; 165:21-6. [DOI: 10.1016/j.jviromet.2009.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 11/26/2022]
|
22
|
Molecular characterization of the genome of duck enteritis virus. Virology 2009; 391:151-61. [DOI: 10.1016/j.virol.2009.06.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 05/28/2009] [Accepted: 06/09/2009] [Indexed: 11/21/2022]
|
23
|
Molecular characterization of the duck enteritis virus UL4 gene. Virol Sin 2009. [DOI: 10.1007/s12250-009-3002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Novel microRNAs (miRNAs) encoded by herpesvirus of Turkeys: evidence of miRNA evolution by duplication. J Virol 2009; 83:6969-73. [PMID: 19403687 DOI: 10.1128/jvi.00322-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesviruses account for 134 out of the 140 virus-encoded microRNAs (miRNAs) known today. Here we report the identification of 11 novel miRNAs encoded by herpesvirus of turkey (HVT), a virus used as a live vaccine in poultry against the highly oncogenic Marek's disease virus type 1. Ten of these miRNAs were clustered together within the repeat long region of the viral genome, demonstrating some degree of positional conservation with other mardiviruses. Close sequence and phylogenetic relationships of some miRNAs in this cluster indicate evolution by duplication. HVT miRNAs represent the first example of virus-encoded miRNAs that show evolution by duplication.
Collapse
|
25
|
MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 2009; 388:128-36. [PMID: 19328516 DOI: 10.1016/j.virol.2009.02.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 01/04/2023]
Abstract
Many herpesviruses, including Marek's disease viruses (MDV1 and MDV2), encode microRNAs. In this study, we report microRNAs of two related herpesviruses, infectious laryngotracheitis virus (ILTV) and herpesvirus of turkeys (HVT), as well as additional MDV2 microRNAs. The genome locations, but not microRNA sequences, are conserved among all four of these avian herpesviruses. Most are clustered in the repeats flanking the unique long region (I/TR(L)), except in ILTV which lacks these repeats. Two abundant ILTV microRNAs are antisense to the immediate early gene ICP4. A homologue of host microRNA, gga-miR-221, was found among the HVT microRNAs. Additionally, a cluster of HVT microRNAs was found in a region containing two locally duplicated segments, resulting in paralogous HVT microRNAs with 96-100% identity. The prevalence of microRNAs in the genomic repeat regions as well as in local repeats suggests the importance of genetic plasticity in herpesviruses for microRNA evolution and preservation of function.
Collapse
|
26
|
Chen M, Payne WS, Hunt H, Zhang H, Holmen SL, Dodgson JB. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference. Virology 2008; 377:265-72. [DOI: 10.1016/j.virol.2008.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/07/2008] [Accepted: 03/15/2008] [Indexed: 10/21/2022]
|
27
|
Champier G, Couvreux A, Hantz S, Rametti A, Mazeron MC, Bouaziz S, Denis F, Alain S. Putative Functional Domains of Human Cytomegalovirus pUL56 Involved in Dimerization and Benzimidazole D-Ribonucleoside Activity. Antivir Ther 2008. [DOI: 10.1177/135965350801300504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Benzimidazole d-ribonucleosides inhibit DNA packaging during human cytomegalovirus (HCMV) replication. Although they have been shown to target pUL56 and pUL89 (the large and small subunits of the HCMV terminase, respectively) their mechanism of action is not yet fully understood. We aimed here to better understand HCMV DNA maturation and the mechanism of action of benzimidazole derivatives. Methods The HCMV pUL56 protein was studied by sequence analysis of the HCMV UL56 gene and herpesvirus counterparts combined with primary structure analysis of the corresponding amino acid sequences. Results The UL56 sequence analysis of 45 HCMV strains and counterparts among herpesviruses allowed the identification of 12 conserved regions. Moreover, comparison with the product of gene 49 (gp49) of bacteriophage T4 suggested that the pUL56 zinc finger is localized close to the dimerization site of pUL56, providing a spatial organization of the catalytic site that allows recognition and cleavage of DNA. Conclusions This study provides a basis to investigate the mechanism of concatemeric DNA cleavage and a biochemical basis for DNA packaging inhibition by benzimidazole derivatives.
Collapse
Affiliation(s)
- Gaël Champier
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Anthony Couvreux
- Unité de Pharmacologie Chimique et Génétique; CNRS, UMR 8151, Paris, F-75270 Cedex 06, France
- Inserm, U 640, Paris, F-75270 Cedex 06, France
- Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 Cedex 06, France
| | - Sébastien Hantz
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Armelle Rametti
- EA 3842 Homéostasie Cellulaire et Pathologie, Faculté de Médecine de Limoges, France
| | - Marie-Christine Mazeron
- Service de Bactériologie-Virologie, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Centre National de Référence Cytomegalovirus Associate Laboratory, Paris, France
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique; CNRS, UMR 8151, Paris, F-75270 Cedex 06, France
- Inserm, U 640, Paris, F-75270 Cedex 06, France
- Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 Cedex 06, France
| | - François Denis
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Sophie Alain
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| |
Collapse
|
28
|
Pan H, Cao R, Liu L, Niu M, Zhou B, Chen P, Hu J. Molecular cloning and sequence analysis of the duck enteritis virus UL5 gene. Virus Res 2008; 136:152-6. [PMID: 18582977 DOI: 10.1016/j.virusres.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 11/18/2022]
Abstract
Duck enteritis virus (DEV) is a herpesvirus that causes an acute, contagious, and fatal disease. In the present article, the DEV UL5 gene was cloned and sequenced from a vaccine virus. According to the consensus sequence of herpesvirus UL5 and UL3 gene degenerate oligonucleotide primers were designed and were used in the polymerase chain reaction (PCR) to amplify DNA products with 4577 bp in size. DNA sequence analysis revealed a 2568 bp open reading frame (ORF) encoding a 855 amino acid polypeptide homologous to herpesvirus UL5 proteins. The DEV UL5 gene has a base composition of 769 adenine (29.95%), 556 cytosine (21.65%), 533 guanine (20.76%) and 710 thymine (27.65%). Sequence comparison revealed that the nucleotide sequence of the DEV UL5 gene was highly similar to other alphaherpesviruses. Phylogenetic tree analysis showed that the fifteen herpesviruses viruses analyzed fell into four large groups, and the duck enteritis virus itself branched and was most closely related to meleagrid herpesvirus 1, gallid herpesvirus 2 and gallid herpesvirus 3 subtrees.
Collapse
Affiliation(s)
- Huaqi Pan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Schumacher D, McKinney C, Kaufer BB, Osterrieder N. Enzymatically inactive U(S)3 protein kinase of Marek's disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology 2008; 375:37-47. [PMID: 18304599 DOI: 10.1016/j.virol.2008.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/14/2008] [Accepted: 01/18/2008] [Indexed: 01/10/2023]
Abstract
Marek's disease (MD) is a highly contagious, lymphoproliferative disease of chickens caused by the cell-associated MD virus (MDV), a member of the alphaherpesvirus subfamily. In a previous study we showed that the absence of the serine/threonine protein kinase (pU(S)3) encoded in the MDV unique-short region resulted in accumulation of primarily enveloped virions in the perinuclear space and significant impairment of virus growth in vitro. It was also shown that pU(S)3 is involved in actin stress fiber breakdown [Schumacher, D., Tischer, B. K., Trapp, S., and Osterrieder, N. (2005). Here, we constructed a recombinant virus to test the importance of pU(S)3 kinase activity for MDV replication and its functions in actin rearrangement. Disruption of the kinase active site was achieved by substituting a lysine at position 220 with an alanine (K220A). Titers of a kinase-negative MDV mutant, 20U(S)3()K220A, were reduced when compared to parental virus similar to those of the U(S)3 deletion mutant. We were also able to demonstrate complete absence of phosphorylation of MDV-specific phosphoprotein pp38 in cells infected with the kinase-deficient virus, indicating that pp38 phosphorylation depends entirely on the kinase activity of pU(S)3. Enzymatically inactive pU(S)3()K220A was, however, still capable of mediating breakdown of the actin cytoskeleton in transfection studies, and this activity was indistinguishable from that of wild-type pU(S)3(). Furthermore, we demonstrated that pU(S)3 possesses anti-apoptotic activity, which is dependent on its kinase activity. Taken together, our results demonstrate that pU(S)3 and MDV-specific phosphoprotein pp38 represent a kinase-substrate pair and that growth impairment in the absence of pU(S)3 is caused by the absence of kinase activity. The unaltered disruption of F-actin by the K220A pU(S)3 mutant suggests that F-actin disassembly is unrelated to MDV growth restrictions in the absence of the unique-short protein kinase.
Collapse
Affiliation(s)
- Daniel Schumacher
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
30
|
Zelnik V. Marek's disease virus research in the post-sequencing era: new tools for the study of gene functions and virus-host interactions. Avian Pathol 2007; 32:323-33. [PMID: 17585455 DOI: 10.1080/0307945031000121068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the fact that the causative agent of Marek's disease was described more than 30 years ago, and that subsequently many classical biological studies have been carried out on the Marek's disease virus (MDV), detailed analysis of its gene functions has been hampered by lack of suitable research tools. Information on the primary structure of MDV-1 and its serologically related viruses, MDV-2 and herpesvirus of turkeys, is now available. This review focuses on the introduction of the modern and highly efficient technology of bacterial artificial chromosome (BAC) cloning and mutagenesis for rapid manipulation of the MDV genome, with the aim of studying the functions of its genes and non-coding regions. Constructed MDV BACs carry the complete genome of MDV that can be multiplied in Escherichia coli and manipulated using the tools provided by bacterial genetics. The novel approach of MDV DNA mutagenesis using BAC technology will be explained by examples, and we will discuss gene functions in comparison with their counterparts in other herpesviruses. In addition, we have shown that MDV BAC DNA can be used as a polynucleotide vaccine to protect against Marek's disease, thus opening a new chapter in strategies for control of this disease.
Collapse
Affiliation(s)
- Vladimír Zelnik
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 842 45, Slovakia.
| |
Collapse
|
31
|
Burnside J, Morgan RW. Genomics and Marek's disease virus. Cytogenet Genome Res 2007; 117:376-87. [PMID: 17675881 DOI: 10.1159/000103201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/12/2006] [Indexed: 12/11/2022] Open
Abstract
Marek's disease virus (MDV), a lymphotrophic alphaherpesvirus of chickens, causes a disease that is characterized by tumor formation, immunosuppression and neurological disorders. Recent developments in chicken genomics have been applied to studies of MDV and have advanced our understanding of both the virus and the disease it causes. We have constructed and used microarrays to identify host genes that are up-regulated in chicken embryo fibroblasts infected with MDV as a first step to catalog the host response to infection. An additional level of gene regulation lies at the level of microRNAs (miRNAs). miRNAs are a class of small (approximately 22 nt) regulatory molecules encoded by a wide variety of organisms, including some viruses, that block translation or induce degradation of specific mRNAs. Herpesviruses, which replicate in the nuclei of infected cells, are a particularly important class of viruses that express miRNAs. miRNAs from two of the oncogenic herpesviruses; namely, Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) have been cataloged. We recently identified MDV-encoded miRNAs. One cluster of miRNAs flanks the meq oncogene, and a second cluster maps to the latency associated transcript (LAT) region of the genome. The LATs are encoded anti-sense to the ICP4 immediate early gene, and the meq gene, which is unique to pathogenic serotypes of MDV, is the most likely oncoprotein or co-oncoprotein encoded by MDV. The conservation of these sequences is suggestive of an important role in pathogenesis.
Collapse
Affiliation(s)
- J Burnside
- Department of Animal and Food Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| | | |
Collapse
|
32
|
Spatz SJ, Silva RF. Sequence determination of variable regions within the genomes of gallid herpesvirus-2 pathotypes. Arch Virol 2007; 152:1665-78. [PMID: 17557133 DOI: 10.1007/s00705-007-0992-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Comparative genomic studies of attenuated and virulent strains of Gallid herpesvirus 2 (GaHV-2) have identified 6 regions of sequence variability. These regions include the open reading frames (ORFs) encoding UL36 and UL49 and regions devoid of large ORFs (132-bp repeats, a-like sequences and the junctions flanking the unique short region). Our data indicate that the carboxyl terminus of UL36 contains regions of heterogeneity that are unique to CVI988-derived attenuated strains. A deletion of the TKSERT domain and a glycine(245) polymorphism in the UL49 proteins were also identified in these derivatives. Phylogenetic analyses of both UL36 and UL49 sequences indicate that CVI988-derived strains partition differently from other attenuated strains (RM-1 and R2/23), indicating that additional mutations contribute to attenuation. In very virulent and very virulent plus strains a single nucleotide polymorphism (SNP) was identified within the 132-bp tandem repeats. Within the junctions flanking the unique short region, these strains also contain deletions in sequences that are predicted to bind the transcription factor NF kappaB. In some attenuated strains, deletions were also identified in the latency-associated transcript (LAT) promoters and adjacent regions encoding microRNAs. These results indicate that virulence is likely multi-factorial with contributions from both multiple genes and cis-acting sites.
Collapse
Affiliation(s)
- S J Spatz
- United States Department of Agriculture, Southeast Poultry Research Laboratory, Agricultural Research Service, Athens, GA 30605, USA.
| | | |
Collapse
|
33
|
Jarosinski KW, Tischer BK, Trapp S, Osterrieder N. Marek's disease virus: lytic replication, oncogenesis and control. Expert Rev Vaccines 2007; 5:761-72. [PMID: 17184215 DOI: 10.1586/14760584.5.6.761] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marek's disease (MD) is caused by a ubiquitous, lymphotropic alphaherpesvirus, MD virus (MDV). MD has been a major concern in the poultry industry owing to the emergence of increasingly virulent strains over the last few decades that were isolated in the face of comprehensive vaccination. The disease is characterized by a variety of clinical signs; among them are neurological symptoms, chronic wasting and, most notably, the development of multiple lymphomas that manifest as solid tumors in the viscera and musculature. Much work has been devoted to study MD-induced oncogenesis and the genes involved in this process. Among the many genes encoded by MDV, a number have been shown recently to affect the development of tumors in chickens, one protein directly causing transformation of cells (Meq) and another being involved in maintaining transformed cells (vTR). Other MDV gene products modulate and are involved in early lytic in vivo replication, thereby increasing the chance of transformation occurring. In this review, we will summarize specific genes encoded by MDV that are involved in the initiation and/or maintenance of transformation and will focus mostly on current vaccination and control strategies against MD, particularly how modern molecular biological methods may be used to improve strategies to combat the disease in the future.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Cornell University, Department of Microbiology and Immunology, College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
34
|
Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW. Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 2006; 80:8778-86. [PMID: 16912324 PMCID: PMC1563840 DOI: 10.1128/jvi.00831-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small (approximately 22-nucleotide) regulatory molecules that block translation or induce degradation of target mRNAs. These have been identified in a wide range of organisms, including viruses. In particular, the oncogenic gammaherpesviruses Kaposi's sarcoma herpesvirus and Epstein-Barr virus encode miRNAs that could potentially regulate either viral or host genes. To determine if Marek's disease virus (MDV), an oncogenic alphaherpesvirus of chickens, encodes miRNAs, we isolated small RNAs from MDV-infected chicken embryo fibroblasts (CEF) and used the 454 Life Sciences sequencing technology to obtain the sequences of 13,679 candidate host and viral small RNAs. Eight miRNAs were found, five of which flank the meq oncogene and three that map to the latency-associated transcript (LAT) region of the genome. The meq gene is unique to pathogenic serotypes of MDV and is transcriptionally active during latency and transformation, and the LAT region of the MDV genome is antisense to the immediate-early gene ICP4. Secondary structure analysis predicted that the regions flanking the miRNAs could form hairpin precursors. Northern blot analysis confirmed expression of all miRNAs in MDV-infected CEF, MDV-induced tumors, and MDV lymphoblastoid cell lines. We propose that the MDV miRNAs function to enable MDV pathogenesis and contribute to MDV-induced transformation of chicken T cells.
Collapse
Affiliation(s)
- Joan Burnside
- Department of Animal and Food Sciences, University of Delaware, Newark, 19711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Thureen DR, Keeler CL. Psittacid herpesvirus 1 and infectious laryngotracheitis virus: Comparative genome sequence analysis of two avian alphaherpesviruses. J Virol 2006; 80:7863-72. [PMID: 16873243 PMCID: PMC1563825 DOI: 10.1128/jvi.00134-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Psittacid herpesvirus 1 (PsHV-1) is the causative agent of Pacheco's disease, an acute, highly contagious, and potentially lethal respiratory herpesvirus infection in psittacine birds, while infectious laryngotracheitis virus (ILTV) is a highly contagious and economically significant avian herpesvirus which is responsible for an acute respiratory disease limited to galliform birds. The complete genome sequence of PsHV-1 has been determined and compared to the ILTV sequence, assembled from published data. The PsHV-1 and ILTV genomes exhibit similar structural characteristics and are 163,025 bp and 148,665 bp in length, respectively. The PsHV-1 genome contains 73 predicted open reading frames (ORFs), while the ILTV genome contains 77 predicted ORFs. Both genomes contain an inversion in the unique long region similar to that observed in pseudorabies virus. PsHV-1 is closely related to ILTV, and it is proposed that it be assigned to the Iltovirus genus. These two avian herpesviruses represent a phylogenetically unique clade of alphaherpesviruses that are distinct from the Marek's disease-like viruses (Mardivirus). The determination of the complete genomic nucleotide sequences of PsHV-1 and ILTV provides a tool for further comparative and functional analysis of this unique class of avian alphaherpesviruses.
Collapse
Affiliation(s)
- Dean R Thureen
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150, USA
| | | |
Collapse
|
36
|
Ding J, Cui Z, Lee LF, Cui X, Reddy SM. The role of pp38 in regulation of Marek's disease virus bi-directional promoter between pp38 and 1.8-kb mRNA. Virus Genes 2006; 32:193-201. [PMID: 16604452 DOI: 10.1007/s11262-005-6876-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 10/24/2022]
Abstract
Marek's disease virus (MDV) contains a bi-directional promoters located between pp38 gene and 1.8-kb mRNA in the long inverted repeat region of the viral genome. The involvement of pp38 gene in up-regulating the activity of these promoters was analyzed by transient expression of chloramphenicol acetyltransferase (CAT) reporter gene. Two CAT reporter plasmids, pP(pp38)-CAT and pP(1.8-kb)-CAT, were constructed to express CAT under the control of the bi-directional promoter in both orientations. These plasmids were transfected into chicken embryonic fibroblast (CEF), infected with rMd5 and pp38 deleted rMd5 (rMd5/Deltapp38), respectively. No CAT activity was detected in uninfected CEF as expected. CAT activities in rMd5/Deltapp38 virus infected CEF (rMd5/Deltapp38-CEF) were 3.5-fold lower using pP(pp38)-CAT and 12-fold lower using pP(1.8-kb)-CAT than those of the parental rMd5 infected CEF (rMd5-CEF). The significantly lower promoter activity in the pp38 deletion virus suggests that pp38 can regulate the activity of the bi-directional promoters, especially in the direction of 1.8-kb mRNA family. Co-transfection of pp38-expressing plasmid (pcDNA-pp38) into rMd5/Deltapp38-CEF significantly increased the activity of the bi-directional promoters using either pP(pp38)-CAT or pP(1.8-kb)-CAT. DNA mobility shift assay showed a binding of the 73-bp sequence of the bi-directional promoter with rMd5-CEF but not with rMd5/Deltapp38-CEF or uninfected CEF lysates. However, rMd5/Deltapp38-CEF lysates could bind the same 73-bp promoter sequence when co-transfected with pp38-expressing plasmid (pcDNA-pp38). All these data taken together suggest pp38 plays an important role in regulating the transcriptional activity of the bi-directional promoter.
Collapse
MESH Headings
- Animals
- Antigens, Viral/analysis
- Antigens, Viral/physiology
- Artificial Gene Fusion
- Base Sequence
- Blotting, Western
- Cell Line
- Chickens
- Chloramphenicol O-Acetyltransferase/analysis
- Chloramphenicol O-Acetyltransferase/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Fibroblasts/virology
- Fluorescent Antibody Technique, Direct
- Gene Expression Regulation, Viral
- Genes, Reporter
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/physiology
- Molecular Sequence Data
- Phosphoproteins/analysis
- Phosphoproteins/physiology
- Promoter Regions, Genetic
- Protein Binding
- Transcription, Genetic
Collapse
Affiliation(s)
- Jiabo Ding
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | | | | | | |
Collapse
|
37
|
Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek's disease virus: from miasma to model. Nat Rev Microbiol 2006; 4:283-94. [PMID: 16541136 DOI: 10.1038/nrmicro1382] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marek's disease virus (MDV) is an oncogenic herpesvirus that causes various clinical syndromes in its natural host, the chicken. MDV has long been of interest as a model organism, particularly with respect to the pathogenesis and immune control of virus-induced lymphoma in an easily accessible small-animal system. Recent advances in MDV genetics and the determination of the chicken genome sequence, aided by functional genomics, have begun to dramatically increase our understanding not only of lytic MDV replication, but also of the factors and mechanisms leading to latency and tumour formation. This new information is helping to elucidate cellular signalling pathways that have undergone convergent evolution and are perturbed by different viruses, and emphasizes the value of MDV as a comparative biomedical model. Furthermore, the door is now open for rational and efficient engineering of new vaccines against one of the most important and widespread infectious diseases in chickens.
Collapse
Affiliation(s)
- Nikolaus Osterrieder
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
38
|
Baigent SJ, Petherbridge LJ, Smith LP, Zhao Y, Chesters PM, Nair VK. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease. J Gen Virol 2006; 87:769-776. [PMID: 16528024 DOI: 10.1099/vir.0.81498-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpesvirus of turkey (HVT) is an alphaherpesvirus that is widely used as a live vaccine against Marek's disease because of its antigenic relationship with Marek's disease virus (MDV). In spite of a similar genome structure, HVT has several unique genes, the functions of which are not completely understood. As a first step in carrying out detailed analysis of the functions of the HVT genes, a full-length infectious bacterial artificial chromosome (BAC) clone of HVT was constructed. DNA from two independent BAC clones, upon transfection into chicken embryo fibroblasts, produced plaques similar to those produced by the wild-type virus. Viruses derived from the BAC clones were stable during in vitro passage, but showed differences in in vitro growth kinetics compared with the wild-type virus. Using a one-step mutagenesis protocol to delete the essential glycoprotein B gene from the HVT genome, followed by construction of the revertant virus, BAC clones of HVT were shown to be amenable to standard mutagenesis techniques. In spite of the difference in in vitro growth, viruses from both clones induced 100 % protection against infection by the virulent MDV strain RB-1B, indicating that the BAC-derived viruses could be used as vaccines with efficacies similar to that of the parental virus. The construction of HVT BAC is a major step in understanding the functions of HVT genes by exploiting the power of BAC technology. Furthermore, the availability of the BAC clones enables use of HVT as a vector for expressing foreign genes.
Collapse
Affiliation(s)
- Susan J Baigent
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | - Lorraine P Smith
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Yuguang Zhao
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Peter M Chesters
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Venugopal K Nair
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| |
Collapse
|
39
|
Anobile JM, Arumugaswami V, Downs D, Czymmek K, Parcells M, Schmidt CJ. Nuclear localization and dynamic properties of the Marek's disease virus oncogene products Meq and Meq/vIL8. J Virol 2006; 80:1160-6. [PMID: 16414993 PMCID: PMC1346918 DOI: 10.1128/jvi.80.3.1160-1166.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Marek's disease virus (MDV) is an avian herpesvirus that causes T-cell lymphomas and immune suppression in susceptible chickens. At least one gene product, MDV Eco Q-encoded protein (Meq), is essential for the oncogenicity of MDV. Alternative splicing permits the meq gene to give rise to two major transcripts encoding proteins designated Meq and Meq/vIL8. Meq is a basic leucine zipper protein capable of modulating transcription. The Meq/vIL8 protein retains a modified leucine zipper, along with the mature receptor-binding portion of vIL8, but lacks the domain of Meq responsible for transcriptional modulation. In this report, we describe studies using fusions between either Meq or Meq/vIL8 and fluorescent proteins to characterize the distribution and properties of these products in chicken embryo fibroblasts (CEFs). Meq and Meq/vIL8 both localized to the nucleoplasm, nucleoli, and Cajal bodies of transfected cells. Similar distributions were found for fluorescent fusion proteins and native Meq or Meq/vIL8. Fluorescence recovery after photobleaching and photoactivatable green fluorescent protein revealed that Meq exhibited mobility properties similar to those of other transcription factors, while Meq/vIL8 was far less mobile. In addition, fluorescence resonance energy transfer studies indicated the formation of Meq/vIL8 homodimers in CEFs. Time lapse studies revealed the coordinated elimination of a portion of Meq and Meq/vIL8 from the nucleus. Our data provide new insight regarding the dynamic cellular properties of two forms of a herpesvirus-encoded oncoprotein and suggest that these forms may have fundamentally different functions in MDV-infected cells.
Collapse
Affiliation(s)
- Jonathan M Anobile
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nair V. Evolution of Marek's disease -- a paradigm for incessant race between the pathogen and the host. Vet J 2005; 170:175-83. [PMID: 16129338 DOI: 10.1016/j.tvjl.2004.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2004] [Indexed: 11/28/2022]
Abstract
Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over 1 bn US dollars to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumours in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus has countered each new vaccine with ever more virulent strains. This continuous race between the virus and the host is making the control of this poultry health problem a major challenge for the future.
Collapse
Affiliation(s)
- Venugopal Nair
- Viral Oncogenesis Group, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| |
Collapse
|
41
|
Cardoso M, Hyatt A, Selleck P, Lowther S, Prakash V, Pain D, Cunningham AA, Boyle D. Phylogenetic analysis of the DNA polymerase gene of a novel alphaherpesvirus isolated from an Indian Gyps vulture. Virus Genes 2005; 30:371-81. [PMID: 15830156 DOI: 10.1007/s11262-005-6781-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The DNA polymerase gene of a novel herpesvirus, vulture herpesvirus (VHV), isolated from an Indian Gyps vulture was completely sequenced using primer walking and transposon insertion strategies. DNA sequencing analysis revealed a single open reading frame (ORF) of 3660 nucleotides (53% G-C content) able to encode 1219 amino acids. Identification was based on a nucleotide sequence identity of approximately 50% to other herpesvirus sequences found in Genbank. Nine motifs were identified that are conserved amongst all known herpesviruses and are found within the 3'-5' exonuclease and DNA binding functional domains of the DNA polymerase enzyme. Phylogenetic analysis using Clustal W with neighbour-joining revealed VHV to group within the subfamily Alphaherpesvirinae, more closely related to the avian herpesviruses than to those of other species. Partial sequence data also revealed VHV to contain other genes fundamental to the structure and replication of all herpesvirus genomes. A Real Time PCR Taqman assay specific for the VHV DNA polymerase gene was designed to detect the presence of VHV genomic material in post mortem tissue samples from diseased birds. Positive tissues included the spleen, rectum, thymus, kidney and brain. A herpesvirus specific to vultures may pose a threat to the management of captive breeding programs being established to assist the survival of wild populations of Gyps vultures.
Collapse
Affiliation(s)
- Maria Cardoso
- Australian Animal Health Laboratories, CSIRO Livestock Industries, Private Bag 24, Geelong, Victoria, 3220, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kamil JP, Tischer BK, Trapp S, Nair VK, Osterrieder N, Kung HJ. vLIP, a viral lipase homologue, is a virulence factor of Marek's disease virus. J Virol 2005; 79:6984-96. [PMID: 15890938 PMCID: PMC1112136 DOI: 10.1128/jvi.79.11.6984-6996.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genome of Marek's disease virus (MDV) has been predicted to encode a secreted glycoprotein, vLIP, which bears significant homology to the alpha/beta hydrolase fold of pancreatic lipases. Here it is demonstrated that MDV vLIP mRNA is produced via splicing and that vLIP is a late gene, due to its sensitivity to inhibition of DNA replication. While vLIP was found to conserve several residues essential to hydrolase activity, an unfavorable asparagine substitution is present at the lipase catalytic triad acid position. Consistent with structural predictions, purified recombinant vLIP did not show detectable activity on traditional phospholipid or triacylglyceride substrates. Two different vLIP mutant viruses, one bearing a 173-amino-acid deletion in the lipase homologous domain, the other having an alanine point mutant at the serine nucleophile position, caused a significantly lower incidence of Marek's disease in chickens and resulted in enhanced survival relative to two independently produced vLIP revertants or parental virus. These data provide the first evidence that vLIP enhances the replication and pathogenic potential of MDV. Furthermore, while vLIP may not serve as a traditional lipase enzyme, the data indicate that the serine nucleophile position is nonetheless essential in vivo for the viral functions of vLIP. Therefore, it is suggested that this particular example of lipase homology may represent the repurposing of an alpha/beta hydrolase fold toward a nonenzymatic role, possibly in lipid bonding.
Collapse
Affiliation(s)
- Jeremy P Kamil
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
43
|
Islam A, Harrison B, Cheetham BF, Mahony TJ, Young PL, Walkden-Brown SW. Differential amplification and quantitation of Marek's disease viruses using real-time polymerase chain reaction. J Virol Methods 2004; 119:103-13. [PMID: 15158591 DOI: 10.1016/j.jviromet.2004.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/09/2004] [Accepted: 03/15/2004] [Indexed: 11/18/2022]
Abstract
Quantitative real-time PCR (qPCR) assays for the three serotypes of Marek's disease virus (MDV) have been developed. An internal control qPCR assay that detects chicken alpha2 (VI) collagen gene was also developed to allow quantitation of MDV. To reduce costs and time, the assays for MDV1 and the internal control were combined into a duplex assay. The sensitivity, specificity, precision, and reproducibility of each assay are reported. The MDV qPCR assays were specific to their target gene when compared using Australian field and vaccine strains of MDV and 10-100-fold more sensitive than standard PCR. Using DNA from infected spleen tissue, the lower limit of detection of total DNA (viral and host combined) was 0.025 ng for the MDV1 and collagen assays, and 0.25 ng for the HVT and MDV2 assays. All assays were found to be highly reproducible for Ct values, but less so for calculated concentrations. MDV1 and HVT were quantitated in spleen tissue of twenty experimentally infected chickens 7-35 days after infection. The relative abundance of MDV1 exhibited a clear peak at day 14 post-infection, whereas HVT displayed an increasing trend over the 35 days post-infection. The duplex assay was optimized such that it was able to accurately quantitate MDV1 in samples of very high, medium, and very low relative abundance of MDV1. These qPCR assays will be useful for reliable differentiation and quantitation of MDV for a range of research and industry applications.
Collapse
Affiliation(s)
- Aminul Islam
- Centre for Animal Health and Welfare, School of Rural Science and Agriculture, University of New England, Armidale NSW 2351, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Karaca G, Anobile J, Downs D, Burnside J, Schmidt CJ. Herpesvirus of turkeys: microarray analysis of host gene responses to infection. Virology 2004; 318:102-11. [PMID: 14972539 DOI: 10.1016/j.virol.2003.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 09/08/2003] [Accepted: 09/10/2003] [Indexed: 11/20/2022]
Abstract
Herpesvirus of turkeys (HVT) provides an economically important live vaccine for prevention of Marek's disease (MD) of chickens. MD, characterized by both immunosuppression and T-cell lymphoma, is caused by another herpesvirus termed Marek's disease virus (MDV). Microarrays were used to investigate the response of chicken embryonic fibroblasts (CEF) to infection with HVT. Genes responding to HVT infection include several induced by interferon along with others modulating signal transduction, transcription, scaffolding proteins, and the cytoskeleton. Results are compared with earlier studies examining the responses of CEF cells to infection with MDV.
Collapse
Affiliation(s)
- Gamze Karaca
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717-2150, USA
| | | | | | | | | |
Collapse
|
45
|
Aouacheria A, Banyai M, Rigal D, Schmidt CJ, Gillet G. Characterization of vnr-13, the first alphaherpesvirus gene of the bcl-2 family. Virology 2004; 316:256-66. [PMID: 14644608 DOI: 10.1016/j.virol.2003.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among alpha-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in gamma-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA.
Collapse
Affiliation(s)
- Abdel Aouacheria
- IBCP, UMR 5086 CNRS-Université Claude Bernard 7, Passage du Vercors, F69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
46
|
Perelygina L, Zhu L, Zurkuhlen H, Mills R, Borodovsky M, Hilliard JK. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J Virol 2003; 77:6167-77. [PMID: 12743273 PMCID: PMC155011 DOI: 10.1128/jvi.77.11.6167-6177.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Viral/analysis
- Genome, Viral
- Herpesvirus 1, Cercopithecine/chemistry
- Herpesvirus 1, Cercopithecine/genetics
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/genetics
- Herpesvirus 2, Human/chemistry
- Herpesvirus 2, Human/genetics
- Humans
- Macaca mulatta
- Molecular Sequence Data
- Open Reading Frames/genetics
- Sequence Analysis, DNA
- Viral Proteins/chemistry
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ludmila Perelygina
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta 30303, USA.
| | | | | | | | | | | |
Collapse
|
47
|
de Brevern AG, Loirat F, Badel-Chagnon A, André C, Vincens P, Hazout S. Genome compartimentation by a hybrid chromosome model (HXM). Application to Saccharomyces cerevisae subtelomeres. COMPUTERS & CHEMISTRY 2002; 26:437-45. [PMID: 12144174 DOI: 10.1016/s0097-8485(02)00006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this paper is to present a new approach, called 'Hybrid Chromosome Model' (HXM), which allows both the extraction of regions of similarity between two sequences, and the compartimentation of a set of DNA sequences. The principle of the method consists in compacting a set of sequences (split into fragments of fixed length) into a 'hybrid chromosome', which results from the stacking of the whole sequence fragments. We have illustrated our approach on the 32 subtelomeres of Saccharomyces cerevisae. The compartimentation of these chromosome extremities into common regions of similarity has been carried out. The approach HXM is a fast and efficient tool for mapping entire genomes and for extracting ancient duplications within or between genomes.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Equipe de Bioinformatique Génomique et Moléculaire, Unité INSERM U436, Université Denis Diderot-Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
del Rio T, Werner HC, Enquist LW. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J Virol 2002; 76:774-82. [PMID: 11752167 PMCID: PMC136827 DOI: 10.1128/jvi.76.2.774-782.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tegument of herpesvirus virions is a distinctive structure whose assembly and function are not well understood. The herpes simplex virus type 1 VP22 tegument protein encoded by the UL49 gene is conserved among the alphaherpesviruses. Using cell biology and viral genetics, we provide an initial characterization of the pseudorabies virus (PRV) VP22 homologue. We identified three isoforms of VP22 present in PRV-infected cells that can be resolved by polyacrylamide gel electrophoresis. The predominant form is not phosphorylated and is present in virions, while the other two species are phosphorylated and excluded from virions. VP22 localized to the nucleus by 6 h postinfection, as determined by immunofluorescence and cell fractionation. VP22 immunofluorescence in the nucleus was both diffuse and in punctate structures. The punctate nuclear localization was the most pronounced form of staining and did not localize exclusively to sites of viral DNA replication. Unexpectedly, a VP22 null mutant had no obvious phenotypes during tissue culture infections and was similar to the wild type in all respects. Moreover, the VP22 null mutant was as virulent and neuroinvasive as the wild-type virus after infection of the rodent eye and spread to the brain using both anterograde and retrograde neuronal circuits.
Collapse
Affiliation(s)
- T del Rio
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|