1
|
Fetal Hepatic Response to Bovine Viral Diarrhea Virus Infection in Utero. Pathogens 2018; 7:pathogens7020054. [PMID: 29882795 PMCID: PMC6027343 DOI: 10.3390/pathogens7020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/30/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Non-cytopathic bovine viral diarrhea virus (ncp BVDV) can cause persistent infection (PI) in animals infected in utero during early gestation. PI animals shed the virus for life and are the major source of the virus in herds. The mechanism responsible for BVDV immune tolerance in the PI fetus is unknown. We assessed the impact of BVDV infection on the fetal liver. Dams were inoculated with ncp BVDV at gestational day 75. Fetal liver samples were collected at necropsy, 7 and 14 days post-maternal-BVDV inoculation. BVDV antigen was not detected in the liver at gestational day 82 (7 days post-maternal inoculation). However, at 14 days post-maternal inoculation, BVDV was detected by immunohistochemistry in fetal Kupffer cells. Flow cytometry analysis showed a higher percentage of hepatic immune cells expressed MHC I and MHC II in BVDV-infected fetal liver (as compared to uninfected controls). Immunofluorescence was used to identify Kupffer cells, which were positive for BVDV antigen, near populations of CD3+ lymphocytes. The identification of BVDV in the fetal liver Kupffer cells at 14 days post inoculation is interesting in the context of establishment of tolerance in persistent infection. These data indicate the presence of a hepatic immune response to fetal infection.
Collapse
|
2
|
Montgomery DL. Distribution and Cellular Heterogeneity of Bovine Viral Diarrhea Viral Antigen Expression in the Brain of Persistently Infected Calves: A New Perspective. Vet Pathol 2016; 44:643-54. [PMID: 17846236 DOI: 10.1354/vp.44-5-643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistent infection following in utero exposure to bovine viral diarrhea virus (BVDV) early in gestation is a serious cause of morbidity and mortality in cattle industries worldwide. The brain is a primary target of persistent infection. In the current study, the types of cells infected and topography of viral antigen expression were examined in brain sections from 9 BVDV persistently infected crossbred calves, all less than 1 year of age, by immunohistochemical staining using the 15C5 primary monoclonal antibody. BVDV antigen was detected in the brains of all persistently infected calves. A variety of cell types was infected, including neurons, astrocytes, oligodendroglia, blood vessel-associated cells (pericytes, perivascular macrophages, smooth muscle cells), and cells in the leptomeninges (blood vessel-associated cells). Conclusive demonstration of viral antigen in vascular endothelial cells was elusive. The intensity and distribution of viral antigen staining in neurons were highly variable. Viral antigen staining was most consistent and intense in thalamic nuclei, most notably in dorsal and medial nuclear groups, followed by the hippocampus, entorhinal cortex, basal nuclei, and piriform cortex. Staining in other brain areas was often less intense and inconsistent. The variability in the intensity and topography of viral antigen in the brain may explain the heterogeneity in the clinical manifestations of BVDV-induced disease. Additionally, infection of the brain in persistently infected calves may underlie or at least contribute to endocrine disturbances and immunologic deficits that are protean manifestations of BVDV-induced disease.
Collapse
Affiliation(s)
- D L Montgomery
- Department of Veterinary Sciences, College of Agriculture, University of Wyoming, Laramie, WY 82070, USA.
| |
Collapse
|
3
|
Confer AW, Fulton RW, Step DL, Johnson BJ, Ridpath JF. Viral Antigen Distribution in the Respiratory Tract of Cattle Persistently Infected with Bovine Viral Diarrhea Virus Subtype 2a. Vet Pathol 2016; 42:192-9. [PMID: 15753473 DOI: 10.1354/vp.42-2-192] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissues were obtained at necropsy from the nasal vestibule, turbinates, nasopharynx, trachea, tracheobronchial bifurcation, and lung from each of 10 clinically healthy calves persistently infected (PI) with bovine viral diarrhea virus (BVDV) serotype 2a. Tissues from the nasal vestibule were obtained by biopsy from five additional PI calves. Formalin-fixed tissues were processed for immunohistochemistry to localize the distribution of BVDV throughout the respiratory tract. Antigen distribution and intensity were subjectively evaluated. Throughout the respiratory tract, mononuclear leukocytes, vascular smooth muscle, and endoneural and perineural cells had BVDV immunoreactivity (BVDV-IR). Multifocally, squamous and ciliated columnar epithelium throughout the respiratory tract contained weak to moderate BVDV antigen. Viral antigen was not seen in goblet cells. BVDV-IR in mixed tubuloalveolar glands of the nasal cavity was weak to strong in serous secretory cells and ductular epithelium. Chondrocytes of the concha often contained BVDV antigen diffusely. Nasal mucus-secreting and tracheobronchial glands multifocally contained weak viral signal. In all cases, alveolar macrophages had moderate to strong BVDV-IR, whereas BVDV-IR in alveolar epithelial cells was weak to moderate. BVDV was present in interalveolar leukocytes and mesenchymal cells. Results indicate that serous secretions of the nasal cavity, productive viral infection of epithelium, and infected leukocytes in respiratory secretions are likely major sources of infectious BVDV from PI calves. The presence of BVDV antigen in respiratory epithelium is, at least, indirect support for the notion that this virus predisposes PI cattle to secondary microbial infections.
Collapse
Affiliation(s)
- A W Confer
- Department of Veterinary Pathobiology and the Oklahoma Animal Disease Diagnostic Laboratory, 211 McElroy Hall, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | | | |
Collapse
|
4
|
Abstract
Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.
Collapse
Affiliation(s)
- B. W. Brodersen
- Nebraska Veterinary Diagnostic Center, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
5
|
Chase CCL. The impact of BVDV infection on adaptive immunity. Biologicals 2012; 41:52-60. [PMID: 23137817 DOI: 10.1016/j.biologicals.2012.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 11/29/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes immunosuppression of the adaptive immune response. The level of suppression of the adaptive immune response is strain dependent. The early events of antigen presentation require activation of toll-like receptors that results in the release of pro-inflammatory cytokines. Non-cytopathic (ncp) BVDV infection stimulates cytokines from macrophages in vitro but the effect of BVDV infection in vivo on macrophages or in vitro with monocytes is not clear. Antigen presentation is decreased and co-stimulatory molecules are down regulated. T-lymphocytes numbers are reduced following BVDV infection in a strain dependent manner. There is recruitment of lymphocytes to the bronchial alveolar space following cytopathic (cp) BVDV infection. Depletion of T-lymphocytes occurs in the lymphoid tissue and is strain dependent. BVDV cp T-lymphocyte responses appear to be primarily a T helper 1 response while the response following ncp BVDV induces a T helper 2 response. Cytotoxic T-lymphocytes (CTL), an important BVDV defense mechanism are compromised. The major neutralizing antigens are well characterized but cross-protection between strains is variable. PI animals have normal adaptive immune responses with the exception of the PI strain immunotolerance and mucosal disease may be a function of the level of gamma delta T cells.
Collapse
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, PO Box 2175, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
6
|
Weiner C, Smirnova N, Webb B, Van Campen H, Hansen T. Interferon stimulated genes, CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine viral diarrhea virus. Res Vet Sci 2012; 93:1081-8. [DOI: 10.1016/j.rvsc.2012.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 01/10/2023]
|
7
|
Hansen TR, Smirnova NP, Van Campen H, Shoemaker ML, Ptitsyn AA, Bielefeldt-Ohmann H. Maternal and Fetal Response to Fetal Persistent Infection with Bovine Viral Diarrhea Virus*. Am J Reprod Immunol 2010; 64:295-306. [DOI: 10.1111/j.1600-0897.2010.00904.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Shoemaker ML, Smirnova NP, Bielefeldt-Ohmann H, Austin KJ, van Olphen A, Clapper JA, Hansen TR. Differential expression of the type I interferon pathway during persistent and transient bovine viral diarrhea virus infection. J Interferon Cytokine Res 2009; 29:23-35. [PMID: 19014339 DOI: 10.1089/jir.2008.0033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Persistent infection with bovine viral diarrhea virus (BVDV) serves as a reservoir for the perpetuation of infection in cattle populations and causes a range of adverse effects on the health of the host. To study the interactions of the virus with the host, gene expression was compared in the blood of persistently infected (PI) and uninfected steer, and in the blood and tissues of PI fetuses, transiently infected (TI), and uninfected bovine fetuses. Microarray analysis of PI steer blood revealed differential gene expression indicative of an interferon (IFN) response including genes involved in cell cycle regulation, which may contribute to long-term adverse effects. Upregulation of IFN-stimulated genes (e.g., ISG15, PKR) and RNA helicases (RIG-I, LGP2, MDA-5) was identified in both PI fetal and steer blood in comparison to controls, indicating a continued stimulation of the innate antiviral response as a result of the persistent viremia. ISG15 was studied in further detail, implicating reticular cells as basal producers of ISG15 in the spleen, in addition to endothelial and macrophage-like cells in infected spleen. Consequences of chronic IFN pathway activation in PI cattle may include growth- and immunosuppression, the pathogenesis of which is still poorly understood. This study lends new insights into the interactions between BVDV and its host, and can serve as a model for studies of the role of the IFN system in persistent infections.
Collapse
Affiliation(s)
- Megan L Shoemaker
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Smirnova NP, Bielefeldt-Ohmann H, Van Campen H, Austin KJ, Han H, Montgomery DL, Shoemaker ML, van Olphen AL, Hansen TR. Acute non-cytopathic bovine viral diarrhea virus infection induces pronounced type I interferon response in pregnant cows and fetuses. Virus Res 2007; 132:49-58. [PMID: 18053605 DOI: 10.1016/j.virusres.2007.10.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/10/2007] [Accepted: 10/17/2007] [Indexed: 01/31/2023]
Abstract
Bovine viral diarrhea virus (BVDV) infection occurs in the cattle population worldwide. Non-cytopathic (ncp) BVDV strains cause transient infection (TI) or persistent infection (PI) depending on the host's immune status. Immunocompetent adult animals and fetuses in late gestation resolve the infection. Fetal infection in early gestation results in PI with chronic viremia and life-long viral shedding, ensuring virus perpetuation in the population. Eighteen pregnant heifers, divided into three groups, were intranasally inoculated with ncp BVDV2 virus early (day 75) and late (day 175) in gestation, or kept BVDV-naïve. Fetuses were retrieved on day 190. Antiviral activity in blood of dams and fetuses, maternal expression of interferon (IFN) stimulated gene 15kDa (ISG15), virological and serological status of heifers and fetuses, and fetal growth were studied. A pronounced antiviral activity in blood of heifers and TI fetuses during acute BVDV infection was accompanied by drastic up-regulation of ISG15 mRNA in maternal blood. Only one PI fetus expressed low IFN response 115 days post inoculation despite high BVDV antigen and RNA levels. PI fetuses presented with growth retardation. Infection of pregnant heifers with ncp BVDV2 early in gestation adversely affects fetal development and antiviral responses, despite protective immune responses in the dam.
Collapse
Affiliation(s)
- Natalia P Smirnova
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1683, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pillai MR, Lefevre EA, Carr BV, Charleston B, O'Grady P. Workshop cluster 1, a γδ T cell specific receptor is phosphorylated and down regulated by activation induced Src family kinase activity. Mol Immunol 2007; 44:1691-703. [PMID: 16997376 DOI: 10.1016/j.molimm.2006.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 11/28/2022]
Abstract
Workshop cluster 1(+) gamma delta (WC1(+)gammadelta) T cells have been shown to play important roles in the immune response to infections. WC1 is a transmembrane glycoprotein, uniquely expressed on the surface of gammadelta T cells of ruminants and pigs. A role for WC1 in inducing a reversible growth arrest of gammadelta T cells has been previously demonstrated. WC1-induced growth inhibition has been shown to be overcome following gammadelta T cell activation with Concanavalin A (Con A). However, molecular mechanism(s) by which WC1 signalling might be modulated following activation have not been elucidated. In this paper we show that Con A activation of bovine lymphocytes induces the tyrosine phosphorylation of WC1 in a Src-family kinase-dependent manner. Src family kinases also phosphorylated WC1 in a COS-7 co-transfection system. Furthermore, a glutathione-S-transferase (GST)-WC1 cytoplasmic domain fusion protein was directly phosphorylated by recombinant Lck (rLck) in vitro. The Y(1303) of WC1 was identified by mutational analysis as the only one of the five WC1 tyrosine residues to be critical for Src family phosphorylation. The importance of activation-induced Src family activity for WC1 function was investigated with the Src-family specific inhibitor PP2. These studies show that the surface levels of WC1 are down regulated in a Src-family-dependent manner following activation of bovine lymphocytes. Down regulation of surface WC1 was accompanied by a Src-family-dependent accumulation of intracellular WC1. These data show that WC1 is modulated by activation-induced tyrosine phosphorylation thus providing a new insight into the signalling mechanisms by which WC1 and gammadelta T cell activation are regulated in this important and unique cell population.
Collapse
Affiliation(s)
- Meenu R Pillai
- Department of Immunology, Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey GU24 0NF, UK
| | | | | | | | | |
Collapse
|
11
|
Boyd BL, Lee TM, Kruger EF, Pinchuk LM. Cytopathic and non-cytopathic bovine viral diarrhoea virus biotypes affect fluid phase uptake and mannose receptor-mediated endocytosis in bovine monocytes. Vet Immunol Immunopathol 2004; 102:53-65. [PMID: 15451615 DOI: 10.1016/j.vetimm.2004.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 05/27/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
We have used non-cytopathic (ncp) and cytopathic (cp) bovine viral diarrhoea viruses (BVDV) to determine how the two biotypes affect mannose receptor (MR)-mediated endocytosis and fluid phase uptake in bovine monocytes. We have demonstrated that endocytosis in uninfected monocytes after 1 h of culture was mediated by the MR and fluid phase uptake, and after 24 h of culture it was mediated via fluid phase uptake only. Both cp and ncp BVDV affected the mechanisms of antigen uptake in monocytes. Endocytosis in BVDV infected monocytes, unlike in uninfected cells, was MR-independent and mediated by fluid phase uptake after 1 h of infection. The 24-h-BVDV infection changed the antigen uptake mechanisms to become MR- and fluid phase uptake-dependent. We conclude that antigen uptake, an important antigen presenting cell (APC) function, is affected in the early stage of BVDV infection during the first 24 h, with both BVDV biotypes, cp and ncp, having similar effects on monocyte antigen uptake in cattle. By influencing the early antigen uptake function of APC, BVDV might disrupt the function of monocytes as professional APC and contribute to the specific immunotolerance to BVDV.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Bovine Virus Diarrhea-Mucosal Disease/immunology
- Bovine Virus Diarrhea-Mucosal Disease/metabolism
- Bovine Virus Diarrhea-Mucosal Disease/virology
- Cattle
- Cytopathogenic Effect, Viral/immunology
- Dextrans/immunology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Disease Reservoirs/veterinary
- Endocytosis/immunology
- Endocytosis/physiology
- Female
- Fluorescein-5-isothiocyanate/analogs & derivatives
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Monocytes/immunology
- Monocytes/virology
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- Bobbie L Boyd
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, PO Box 6100, 39762-6100, USA
| | | | | | | |
Collapse
|
12
|
Chase CCL, Elmowalid G, Yousif AAA. The immune response to bovine viral diarrhea virus: a constantlychanging picture. Vet Clin North Am Food Anim Pract 2004; 20:95-114. [PMID: 15062477 DOI: 10.1016/j.cvfa.2003.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the major immuno-suppressive viruses of cattle. The effect on the innate and acquired immune system is unique and results in dramatic immune dysfunction. BVDV infection also has the ability to cause persistent infection (PI) in the developing fetus. This Pl syndrome creates a requirement for high levels of BVDV immunity from vaccines to prevent these infections. BVDV vaccines and their future development continue to be an enigma in the control of BVDV.
Collapse
Affiliation(s)
- Christopher C L Chase
- Department of Veterinary Science, South Dakota State University, P.O. Box 2175, Brookings, SD 57007, USA.
| | | | | |
Collapse
|
13
|
Glew EJ, Carr BV, Brackenbury LS, Hope JC, Charleston B, Howard CJ. Differential effects of bovine viral diarrhoea virus on monocytes and dendritic cells. J Gen Virol 2003; 84:1771-1780. [PMID: 12810871 DOI: 10.1099/vir.0.18964-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Various pathogens have been shown to infect antigen-presenting cells and affect their capacity to interact with and stimulate T-cell responses. We have used an antigenically identical pair of non-cytopathic (ncp) and cytopathic (cp) bovine viral diarrhoea virus (BVDV) isolates to determine how the two biotypes affect monocyte and dendritic cell (DC) function. We have shown that monocytes and DCs are both susceptible to infection with ncp BVDV and cp BVDV in vitro. In addition, monocytes infected with ncp BVDV were compromised in their ability to stimulate allogeneic and memory CD4(+) T cell responses, but DCs were not affected. This was not due to down-regulation of a number of recognized co-stimulatory molecules including CD80, CD86 and CD40. Striking differences in the response of the two cell types to infection with cytopathic virus were seen. Dendritic cells were not susceptible to the cytopathic effect caused by cp BVDV, whereas monocytes were killed. Analysis of interferon (IFN)-alpha/beta production showed similar levels in monocytes and DCs exposed to cp BVDV, but none was detected in cells exposed to ncp BVDV. We conclude that the prevention of cell death in DCs is not associated with enhanced production of IFN-alpha/beta, as proposed for influenza virus, but is by a distinct mechanism.
Collapse
Affiliation(s)
- E J Glew
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| | - B V Carr
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| | - L S Brackenbury
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| | - J C Hope
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| | - B Charleston
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| | - C J Howard
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN UK
| |
Collapse
|