1
|
Zhao Z, Zhao Y, Marotta F, Xamxidin M, Li H, Xu J, Hu B, Wu M. The microbial community structure and nitrogen cycle of high-altitude pristine saline lakes on the Qinghai-Tibetan plateau. Front Microbiol 2024; 15:1424368. [PMID: 39132143 PMCID: PMC11312105 DOI: 10.3389/fmicb.2024.1424368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/13/2024] Open
Abstract
The nitrogen (N) cycle is the foundation of the biogeochemistry on Earth and plays a crucial role in global climate stability. It is one of the most important nutrient cycles in high-altitude lakes. The biogeochemistry of nitrogen is almost entirely dependent on redox reactions mediated by microorganisms. However, the nitrogen cycling of microbial communities in the high-altitude saline lakes of the Qinghai-Tibet Plateau (QTP), the world's "third pole" has not been investigated extensively. In this study, we used a metagenomic approach to investigate the microbial communities in four high-altitude pristine saline lakes in the Altun mountain on the QTP. We observed that Proteobacteria, Bacteroidota, and Actinobacteriota were dominant in these lakes. We reconstructed 1,593 bacterial MAGs and 8 archaeal MAGs, 1,060 of which were found to contain nitrogen cycle related genes. Our analysis revealed that nitrite reduction, nitrogen fixation, and assimilatory nitrate reduction processes might be active in the lakes. Denitrification might be a major mechanism driving the potential nitrogen loss, while nitrification might be inactive. A wide variety of microorganisms in the lake, dominated by Proteobacteria, participate together in the nitrogen cycle. The prevalence of the dominant taxon Yoonia in these lakes may be attributed to its well-established nitrogen functions and the coupled proton dynamics. This study is the first to systematically investigate the structure and nitrogen function of the microbial community in the high-altitude pristine saline lakes in the Altun mountain on the QTP. As such, it contributes to a better comprehension of biogeochemistry of high-altitude saline lakes.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Federico Marotta
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Huan Li
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Junquan Xu
- Lab of Plateau Ecology and Nature Conservation, The Altun Mountain National Nature Reserve, Xinjiang, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Huang X, Luo Y, Luo L, Xie D, Li Z. The nitrite reductase encoded by nirBDs in Pseudomonas putida Y-9 influences ammonium transformation. Front Microbiol 2022; 13:982674. [PMID: 36312953 PMCID: PMC9597696 DOI: 10.3389/fmicb.2022.982674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/21/2022] [Indexed: 09/13/2023] Open
Abstract
It is unknown whether nirBDs, which conventionally encode an NADH nitrite reductase, play other novel roles in nitrogen cycling. In this study, we explored the role of nirBDs in the nitrogen cycling of Pseudomonas putida Y-9. nirBDs had no effect on organic nitrogen transformation by strain Y-9. The △nirBD strain exhibited higher ammonium removal efficiency (90.7%) than the wild-type strain (76.1%; P < 0.05) and lower end gaseous nitrogen (N2O) production. Moreover, the expression of glnA (control of the ammonium assimilation) in the △nirBD strain was higher than that in the wild-type strain (P < 0.05) after being cultured in ammonium-containing medium. Furthermore, nitrite noticeably inhibited the ammonium elimination of the wild-type strain, with a corresponding removal rate decreasing to 44.8%. However, no similar impact on ammonium transformation was observed for the △nirBD strain, with removal efficiency reaching 97.5%. In conclusion, nirBDs in strain Y-9 decreased the ammonium assimilation and increased the ammonium oxidation to nitrous oxide.
Collapse
Affiliation(s)
- Xuejiao Huang
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| | - Yuwen Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Luo Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Lloyd JR, Cole JA, Macaskie LE. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 1997; 179:2014-21. [PMID: 9068649 PMCID: PMC178927 DOI: 10.1128/jb.179.6.2014-2021.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.
Collapse
Affiliation(s)
- J R Lloyd
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom.
| | | | | |
Collapse
|
4
|
Abstract
Siroheme, a cofactor of both sulfite and nitrite reductase in Salmonella typhimurium, requires the cysG gene for its synthesis. Three steps are required to synthesize siroheme from uroporphyrinogen III, the last common intermediate in the heme and siroheme pathways. All previously characterized cysG mutants were shown to be defective for the synthesis of cobalamin (B12), which shares a common precursor with siroheme. Since few cysG auxotrophs had been previously analyzed and since there is no evidence of siroheme mutants outside of the cysG region, we sought to expand the analysis of the region by isolating more mutations and studying the transcriptional regulation of the cysG gene using lacZ fusions. We isolated and analyzed 66 cysG auxotrophs. All were defective for both siroheme and cobalamin synthesis. Five exceptional mutants were partially defective for the synthesis of both and appear to be leaky. Complementation tests with tandem duplications suggest that the mutations causing the Cys auxotrophy affect only one cistron. The cysG gene is transcribed in a clockwise direction; this was demonstrated by a method that permits determining the orientation of two genes of unknown orientation provided their relative map order is known. The cysG gene was not part of the cysteine regulon, but had a substantial basal level of expression which was induced fivefold when cells were grown anaerobically on nitrite. Finally, we used Mud-generated duplications to genetically determine the organization of the cysG and nirB genes.
Collapse
Affiliation(s)
- B S Goldman
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
5
|
High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J Bacteriol 1991; 173:325-33. [PMID: 1987123 PMCID: PMC207191 DOI: 10.1128/jb.173.1.325-333.1991] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The flavoprotein and hemoprotein components of Escherichia coli B NADPH-sulfite reductase are encoded by cysJ and cysI, respectively. Plasmids containing these two genes overexpressed flavoprotein catalytic activity and apohemoprotein by 13- to 35-fold, but NADPH-sulfite reductase holoenzyme activity was increased only 3-fold. Maximum overexpression of holoenzyme activity was achieved by the inclusion in such plasmids of Salmonella typhimurium cysG, which encodes a uroporphyrinogen III methyltransferase required for the synthesis of siroheme, a cofactor for the hemoprotein. Thus, cofactor deficiency, in this case siroheme, can limit overexpression of a cloned enzyme. Catalytically active holoenzyme accounted for 10% of total soluble protein in a host containing cloned cysJ, cysI, and cysG. A 5.3-kb DNA fragment containing S. typhimurium cysG was sequenced, and the open reading frame corresponding to cysG was identified by subcloning and by identifying plasmid-encoded peptides in maxicells. Comparison with the sequence reported for the E. coli cysG region (J. A. Cole, unpublished data; GenBank sequence ECONIRBC) indicates a gene order of nirB-nirC-cysG in the cloned S. typhimurium fragment. In addition, two open reading frames of unknown identity were found immediately downstream of cysG. One of these contains 11 direct repeats of 33 nucleotides each, which correspond to the consensus amino acid sequence Asp-Asp-Val-Thr-Pro-Pro-Asp-Asp-Ser-Gly-Asp.
Collapse
|
7
|
Macdonald H, Cole J. Molecular cloning and functional analysis of the cysG and nirB genes of Escherichia coli K12, two closely-linked genes required for NADH-dependent nitrite reductase activity. MOLECULAR & GENERAL GENETICS : MGG 1985; 200:328-34. [PMID: 2993824 DOI: 10.1007/bf00425444] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have cloned two genes, nirB+ and cysG+ which are required for NADH-dependent nitrite reductase to be active, from the 74 min region of the Escherichia coli chromosome. Restriction mapping and complementation analysis establish the gene order crp-nirB-cysG-aroB. Both genes are trans-dominant in merodiploids and, under some conditions, can be expressed independently. The cysG+ gene can be expressed from both high and low copy number plasmids carrying a 3.6 kb PstI-EcoRI restriction fragment. Attempts to sub-clone the nirB+ gene into pBR322 on a 14.5 kb EcoRI fragment were unsuccessful, but this fragment was readily sub-cloned into and expressed from the low copy number plasmid pLG338 (Stoker et al. 1982). Overproduction of the 88 kDa nitrite reductase apoprotein by strains carrying a functional nirB+ gene suggests that nirB is the structural gene for this enzyme.
Collapse
|