1
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
3
|
Johnson CM, Grossman AD. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol Microbiol 2014; 93:1284-301. [PMID: 25069588 DOI: 10.1111/mmi.12736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 01/28/2023]
Abstract
Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high-throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homologue of penicillin-binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane-related functions affect the efficiency of conjugation.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
4
|
Moll I, Fabbretti A, Brandi L, Gualerzi CO. Inhibitors Targeting Riboswitches and Ribozymes. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Penchovsky R, Stoilova CC. Riboswitch-based antibacterial drug discovery using high-throughput screening methods. Expert Opin Drug Discov 2012; 8:65-82. [DOI: 10.1517/17460441.2013.740455] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robert Penchovsky
- Sofia University “St. Kliment Ohridski”, Department of Genetics, Faculty of Biology,
8 Dragan Tzankov Blvd, 1164 Sofia, Bulgaria ;
| | - Cvetelina C Stoilova
- Sofia University “St. Kliment Ohridski”, Department of Genetics, Faculty of Biology,
8 Dragan Tzankov Blvd, 1164 Sofia, Bulgaria ;
| |
Collapse
|
6
|
Wilson-Mitchell SN, Grundy FJ, Henkin TM. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch. Nucleic Acids Res 2012; 40:5706-17. [PMID: 22416067 PMCID: PMC3384330 DOI: 10.1093/nar/gks212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ever-changing environment of a bacterial cell requires sophisticated mechanisms to adjust gene expression in response to changes in nutrient availability. L box riboswitch RNAs regulate gene expression in response to cellular lysine (lys) concentrations in the absence of additional regulatory factors. In Bacillus subtilis, binding of lysine (lys) to the L box RNA causes premature transcription termination in the leader region upstream of the lysC coding sequence. To date, little is known about the specific RNA-lys interactions required for transcription termination. In this study, we characterize features of the B. subtilis lysC leader RNA responsible for lys specificity, and structural elements of the lys molecule required for recognition. The wild-type lysC leader RNA can recognize and discriminate between lys and lys analogs. We identified leader RNA variants with mutations in the lys-binding pocket that exhibit changes in the specificity of ligand recognition. These data demonstrate that lysC leader RNA specificity is the result of recognition of ligand features through a series of distinct interactions between lys and nucleotides that comprise the lys-binding pocket, and provide insight into the molecular mechanisms employed by L box riboswitch RNAs to bind and recognize lys.
Collapse
|
7
|
Deigan KE, FerrÉ-D’AmarÉ AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 2011; 44:1329-38. [PMID: 21615107 DOI: 10.1021/ar200039b] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboswitches are messenger RNA (mRNA) domains that regulate gene function in response to the intracellular concentration of a variety of metabolites and second messengers. They control essential genes in many pathogenic bacteria, thus representing an inviting new class of biomolecular target for the development of antibiotics and chemical-biological tools. In this Account, we briefly review the discovery of riboswitches in the first years of the 21st century and their ensuing characterization over the past decade. We then discuss the progress achieved so far in using riboswitches as a focus for drug discovery, considering both the value of past serendipity and the particular challenges that confront current researchers. Five mechanisms of gene regulation have been determined for riboswitches. Most bacterial riboswitches modulate either transcription termination or translation initiation in response to ligand binding. All known examples of eukaryotic riboswitches, and some bacterial riboswitches, control gene expression by alternative splicing. The glmS riboswitch, which is widespread in Gram-positive bacteria, is a catalytic RNA activated by ligand binding: its self-cleavage destabilizes the mRNA of which it is part. Finally, one example of a trans-acting riboswitch is known. Three-dimensional structures have been determined for representatives of 13 structurally distinct riboswitch classes, providing atomic-level insight into their mechanisms of ligand recognition. While cellular and viral RNAs have attracted widespread interest as potential drug targets, riboswitches show special promise due to the diversity of small-molecule recognition strategies that are on display in their ligand-binding pockets. Moreover, riboswitches have evolved to recognize small-molecule ligands, which is unique among known structured RNA domains. Structural and biochemical advances in the study of riboswitches provide an impetus for the development of methods for the discovery of novel riboswitch activators and inhibitors. Recent rational drug design efforts focused on select riboswitch classes have yielded a small number of candidate antibiotic compounds, including one active in a mouse model of Staphylococcus aureus infection. The development of high-throughput methods suitable for riboswitch-specific drug discovery is ongoing. A fragment-based screening approach employing equilibrium dialysis that may be generically useful has demonstrated early success. Riboswitch-mediated gene regulation is widely employed by bacteria; however, only the thiamine pyrophosphate-responsive riboswitch has thus far been found in eukaryotes. Thus, riboswitches are particularly attractive as targets for antibacterials. Indeed, antimicrobials with previously unknown mechanisms have been found to function by binding riboswitches and causing aberrant gene expression.
Collapse
Affiliation(s)
- Katherine E. Deigan
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adrian R. FerrÉ-D’AmarÉ
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda Maryland 20894, United States
| |
Collapse
|
8
|
Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:592-611. [PMID: 19619684 PMCID: PMC3744886 DOI: 10.1016/j.bbagrm.2009.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023]
Abstract
Riboswitches specifically control expression of genes predominantly involved in biosynthesis, catabolism and transport of various cellular metabolites in organisms from all three kingdoms of life. Among many classes of identified riboswitches, two riboswitches respond to amino acids lysine and glycine to date. Though these riboswitches recognize small compounds, they both belong to the largest riboswitches and have unique structural and functional characteristics. In this review, we attempt to characterize molecular recognition principles employed by amino acid-responsive riboswitches to selectively bind their cognate ligands and to effectively perform a gene regulation function. We summarize up-to-date biochemical and genetic data available for the lysine and glycine riboswitches and correlate these results with recent high-resolution structural information obtained for the lysine riboswitch. We also discuss the contribution of lysine riboswitches to antibiotic resistance and outline potential applications of riboswitches in biotechnology and medicine.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
9
|
Transcriptional analysis of the lysine-responsive and riboswitch-regulated lysC gene of Bacillus subtilis. Curr Microbiol 2009; 59:463-8. [PMID: 19636616 DOI: 10.1007/s00284-009-9461-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
About 2% of the Bacillus subtilis genes are subject to regulation by riboswitch-controlled mechanisms. One of them is the L-lysine-dependent lysC gene which is turned on when the L-lysine concentration within the cytoplasm is low. In the presence of a high L-lysine concentration, only a 0.27-kb transcript is synthesized representing the riboswitch due to transcription termination. When the L-lysine concentration is low, the full-length 1.6-kb transcript is produced due to transcription anti-termination. Here, we show for the first time that even under conditions of transcription anti-termination the truncated form of the RNA is still predominant. This 0.27-kb transcript is neither the result of enhanced stability nor does it result from processing of the full-length transcript. When the region coding for the transcription terminator was removed, the riboswitch RNA failed to be produced. These data were confirmed by analysis of a transcriptional fusion between the promoter-riboswitch region of lysC with and without a functional transcriptional terminator and the lacZ reporter gene. The putative function(s) of the riboswitch under conditions of low L-lysine concentration is discussed.
Collapse
|
10
|
|
11
|
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 2008; 75:652-61. [PMID: 19060158 DOI: 10.1128/aem.01176-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.
Collapse
|
12
|
Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819-27. [PMID: 18154269 DOI: 10.1021/cb7002253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Collapse
Affiliation(s)
| | | | | | | | - Bappaditya Roy
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Rajat Banerjee
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Tina M. Henkin
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| | - Michael Ibba
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| |
Collapse
|
13
|
Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR. Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 2006; 3:44-9. [PMID: 17143270 DOI: 10.1038/nchembio842] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/10/2006] [Indexed: 11/08/2022]
Abstract
Lysine riboswitches are bacterial RNA structures that sense the concentration of lysine and regulate the expression of lysine biosynthesis and transport genes. Members of this riboswitch class are found in the 5' untranslated region of messenger RNAs, where they form highly selective receptors for lysine. Lysine binding to the receptor stabilizes an mRNA tertiary structure that, in most cases, causes transcription termination before the adjacent open reading frame can be expressed. A lysine riboswitch conceivably could be targeted for antibacterial therapy by designing new compounds that bind the riboswitch and suppress lysine biosynthesis and transport genes. As a test of this strategy, we have identified several lysine analogs that bind to riboswitches in vitro and inhibit Bacillus subtilis growth, probably through a mechanism of riboswitch-mediated repression of lysine biosynthesis. These results indicate that riboswitches could serve as new classes of antibacterial drug targets.
Collapse
Affiliation(s)
- Kenneth F Blount
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, KBT 506, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Maumita Mandal
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
15
|
Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003; 17:2688-97. [PMID: 14597663 PMCID: PMC280618 DOI: 10.1101/gad.1140003] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Riboswitches are metabolite-responsive genetic control elements that reside in the untranslated regions (UTRs) of certain messenger RNAs. Herein, we report that the 5'-UTR of the lysC gene of Bacillus subtilis carries a conserved RNA element that serves as a lysine-responsive riboswitch. The ligand-binding domain of the riboswitch binds to L-lysine with an apparent dissociation constant (KD) of approximately 1 micro M, and exhibits a high level of molecular discrimination against closely related analogs, including D-lysine and ornithine. Furthermore, we provide evidence that this widespread class of riboswitches serves as a target for the antimetabolite S-(2-aminoethyl)-L-cysteine (AEC). These findings add support to the hypotheses that direct sensing of metabolites by messenger RNAs is a fundamental form of genetic control and that riboswitches represent a new class of antimicrobial drug targets.
Collapse
Affiliation(s)
- Narasimhan Sudarsan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
16
|
Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 2003; 100:12057-62. [PMID: 14523230 PMCID: PMC218712 DOI: 10.1073/pnas.2133705100] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Indexed: 11/18/2022] Open
Abstract
Expression of amino acid biosynthesis genes in bacteria is often repressed when abundant supplies of the cognate amino acid are available. Repression of the Bacillus subtilis lysC gene by lysine was previously shown to occur at the level of premature termination of transcription. In this study we show that lysine directly promotes transcription termination during in vitro transcription with B. subtilis RNA polymerase and causes a structural shift in the lysC leader RNA. We find that B. subtilis lysC is a member of a large family of bacterial lysine biosynthesis genes that contain similar leader RNA elements. By analogy with related regulatory systems, we designate this leader RNA pattern the "L box." Genes in the L box family from Gram-negative bacteria appear to be regulated at the level of translation initiation rather than transcription termination. Mutations of B. subtilis lysC that disrupt conserved leader features result in loss of lysine repression in vivo and loss of lysine-dependent transcription termination in vitro. The identification of the L box pattern also provides an explanation for previously described mutations in both B. subtilis and Escherichia coli lysC that result in lysC overexpression and resistance to the lysine analog aminoethylcysteine. The L box regulatory system represents an example of gene regulation using an RNA element that directly senses the intracellular concentration of a small molecule.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
17
|
Patte JC, Akrim M, Méjean V. The leader sequence of the Escherichia coli lysC gene is involved in the regulation of LysC synthesis. FEMS Microbiol Lett 1998; 169:165-70. [PMID: 9851048 DOI: 10.1111/j.1574-6968.1998.tb13313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Escherichia coli and Bacillus subtilis, long leader sequences are found upstream of the lysC coding sequences which encode lysine-sensitive aspartokinase. Highly conserved regions exist between these sequences. Mutations leading to constitutive expression of the E. coli lysC gene have been localised within these conserved regions, indicating that they participate in the lysine-mediated repression mechanism of lysC expression.
Collapse
Affiliation(s)
- J C Patte
- Laboratoire de Chimie Bactérienne, C.N.R.S. 31, Marseille, France.
| | | | | |
Collapse
|
18
|
Adebawo O, Ruiz-Barba J, Warner P, Oguntimein G. Regulation of aspartokinase in Lactobacillus plantarum. J Appl Microbiol 1997. [DOI: 10.1111/j.1365-2672.1997.tb02850.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Adebawo OO, Ruiz-Barba JL, Warner PJ, Oguntimein GB. Regulation of aspartokinase in Lactobacillus plantarum. J Appl Microbiol 1997; 82:191-6. [PMID: 12452593 DOI: 10.1111/j.1365-2672.1997.tb03572.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a rational approach to the genetic development of a stable lysine overproducing strain of Lactobacillus plantarum for the fermentation of 'ogi', a Nigerian fermented cereal porridge, regulation of lysine biosynthesis in this species was investigated. Spontaneous lysine overproducing mutants of Lact. plantarum were obtained and their aspartokinase activities compared with those of wild-type strains under different conditions. Results showed that aspartokinase activity of Lact. plantarum cell extracts was not inhibited by either lysine, threonine, methionine or combinations of lysine and threonine. Instead, methionine enhanced aspartokinase activity in vitro. Results indicated that lysine biosynthesis in Lact. plantarum could be regulated by lysine via the control of aspartokinase production in a way different to that described for other bacteria.
Collapse
Affiliation(s)
- O O Adebawo
- Department of Biochemistry, Obafemi Awolowo College of Health Sciences, Ogun State University, Ago-Iwoye, Nigeria
| | | | | | | |
Collapse
|
20
|
Lu Y, Turner RJ, Switzer RL. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression. J Bacteriol 1995; 177:1315-25. [PMID: 7868607 PMCID: PMC176739 DOI: 10.1128/jb.177.5.1315-1325.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the Bacillus subtilis pyr operon is regulated by exogenous pyrimidines and the protein product of the first gene of the operon, PyrR. It has been proposed that PyrR mediates transcriptional attenuation at three untranslated segments of the operon (R.J. Turner, Y. Lu, and R.L. Switzer, J. Bacteriol., 176:3708-3722, 1994). In this study, transcriptional fusions of the pyr promoter followed by the pyr attenuation sequences, either individually or in tandem to a lacZ reporter gene, were used to examine the physiological functions of all three attenuators through their ability to affect beta-galactosidase expression. These fusions were studied as chromosomal integrants in various B. subtilis strains to examine the entire range of control by pyrimidines, PyrR dependence, amd developmental control of pyr gene expression. The nutritional regulation of each attenuator separately was roughly equivalent to that of the other two and was totally dependent upon PyrR, and that of tandem attenuators was cumulative. The regulation of a fusion of the spac promoter followed by the pyrP:pyrB intercistronic region to lacZ produced results similar to those obtained with the corresponding fusion containing the pyr promoter, demonstrating that attenuator-dependent regulation is independent of the promoter. Extreme pyrimidine starvation gave rise to two- to threefold-higher levels of expression of a pyr-lacZ fusion that lacked attenuators, independent of PyrR, than were obtained with cells that were not starved. Increased expression of a similar spac-lacZ fusion during pyrimidine starvation was also observed, however, indicating that attenuator-independent regulation is not a specific property of the pyr operon. Conversion of the initiator AUG codon in a small open reading frame in the pyrP:pyrB intercistronic region to UAG reduced expression by about half but did not alter regulation by pyrimidines, which excludes the possibility of a coupled transcription-translation attenuation mechanism. Developmental regulation of pyr expression during early stationary phase was found to be dependent upon the attenuators and PyrR, and the participation of SpoOA was excluded.
Collapse
Affiliation(s)
- Y Lu
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
21
|
Mironov VN, Kraev AS, Chikindas ML, Chernov BK, Stepanov AI, Skryabin KG. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:201-8. [PMID: 8159171 DOI: 10.1007/bf00391014] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have sequenced 6006 bp DNA of a region from the Bacillus subtilis SHgw chromosome known to contain riboflavin biosynthesis genes (rib gene cluster, 210 degrees on the B. subtilis genetic map). Five of the seven open reading frames found within the sequence are shown to represent the genes ribG, ribB, ribA, ribH and ribTD. The calculated molecular masses for the putative translation products are 39,305, 23,481, 44,121, 16,287 and 14,574 daltons respectively. The five rib genes are transcribed as a polycistronic 4277 nucleotide messenger RNA. The steady-state level of the transcript is negatively regulated by riboflavin. A cis-acting element necessary for regulation was mapped by analysis of constitutive mutations within the 5' untranslated region of the operon. The element is at least 48 bp in length and does not bear obvious similarity to well defined prokaryotic regulatory elements. The molecular mechanism of regulation remains unknown, but the data presented argue against regulation by attenuation.
Collapse
Affiliation(s)
- V N Mironov
- Centre for Bioengineering, Russian Academy of Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
22
|
Follettie MT, Peoples OP, Agoropoulou C, Sinskey AJ. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol 1993; 175:4096-103. [PMID: 8100567 PMCID: PMC204839 DOI: 10.1128/jb.175.13.4096-4103.1993] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two promoters required for expression of the ask-asd genes, encoding aspartokinase (AK) and aspartate-semialdehyde dehydrogenase (ASD), in Corynebacterium flavum N13, askP1 and askP2, have been identified by deletion analysis and S1 nuclease mapping. Transcription from askP1 initiates 35 and 38 bp upstream of the ask structural gene. A second promoter, askP2, lies within the ask coding region, upstream of the translation start site of the AK beta subunit and can direct the expression of AK beta and ASD. Western immunoblot analysis and heterologous expression in Escherichia coli demonstrate that two separate polypeptides, a 44.8-kDa alpha subunit and an 18.5-kDa beta subunit, are expressed from the C. flavum N13 ask gene from distinct, in-frame translation initiation sites. A second AK mutation, G345D, which reduces the sensitivity of AK to concerted feedback inhibition by threonine plus lysine, was identified.
Collapse
Affiliation(s)
- M T Follettie
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
23
|
Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp. Appl Environ Microbiol 1992; 58:2806-14. [PMID: 1444390 PMCID: PMC183011 DOI: 10.1128/aem.58.9.2806-2814.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structural gene coding for the lysine-sensitive aspartokinase II of the methylotrophic thermotolerant Bacillus sp. strain MGA3 was cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking all three aspartokinase isozymes. The nucleotide sequence of the entire 2.2-kb PstI fragment was determined, and a single open reading frame coding for the aspartokinase II enzyme was found. Aspartokinase II was shown to be an alpha 2 beta 2 tetramer (M(r) 122,000) with the beta subunit (M(r) 18,000) encoded within the alpha subunit (M(r) 45,000) in the samea reading frame. The enzyme was purified, and the N-terminal sequences of the alpha and beta subunits were identical with those predicted from the gene sequences. The predicted amino acid sequence was 76% identical with the sequence of the Bacillus subtilis aspartokinase II. The transcription initiation site was located approximately 350 bp upstream of the translation start site, and putative promoter regions at -10 (TATGCT) and -35 (ATGACA) were identified. A 300-nucleotide intervening sequence between the transcription initiation and translational start sites suggests a possible attenuation mechanism for the regulation of transcription of this enzyme in the presence of lysine.
Collapse
|
24
|
Lu Y, Shevtchenko TN, Paulus H. Fine-structure mapping ofcis-acting control sites in thelysCoperon ofBacillus subtilis. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05230.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|