1
|
Chen J, Liu Y, Diep P, Mahadevan R. Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: Progress and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129456. [PMID: 35777147 DOI: 10.1016/j.jhazmat.2022.129456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
With global demands for mineral resources increasing and ore grades decreasing, microorganisms have been increasingly deployed in biomining applications to recover valuable metals particularly from normally considered waste, such as low-grade ores and used consumer electronics. Acidithiobacillus are a genus of chemolithoautotrophic extreme acidophiles that are commonly found in mining process waters and acid mine drainage, which have been reported in several studies to aid in metal recovery from bioremediation of metal-contaminated sites. Compared to conventional mineral processing technologies, biomining is often cited as a more sustainable and environmentally friendly process, but long leaching cycles and low extraction efficiency are main disadvantages that have hampered its industrial applications. Genetic engineering is a powerful technology that can be used to enhance the performance of microorganisms, such as Acidithiobacillus species. In this review, we compile existing data on Acidithiobacillus species' physiological traits and genomic characteristics, progresses in developing genetic tools to engineer them: plasmids, shutter vectors, transformation methods, selection markers, promoters and reporter systems developed, and genome editing techniques. We further propose genetic engineering strategies for enhancing biomining efficiency of Acidithiobacillus species and provide our perspectives on their future applications.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on rus Operon Transcription in Acidithiobacillus ferridurans. Appl Environ Microbiol 2018; 84:AEM.02795-17. [PMID: 29374029 DOI: 10.1128/aem.02795-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/14/2018] [Indexed: 01/08/2023] Open
Abstract
The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, ISAfd1, which belongs to the ISPepr1 subgroup of the IS4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence ISAfd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS66 family) was detected in the downstream inverted repeat of ISAfd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferriduransT to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile.IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation.
Collapse
|
3
|
Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 2005; 1:e55. [PMID: 16261196 PMCID: PMC1274295 DOI: 10.1371/journal.pcbi.0010055] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 09/29/2005] [Indexed: 12/30/2022] Open
Abstract
Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr) and nipC (dnrN), thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network. Comparative genomics is the analysis and comparison of genomes from different species. More then 100 complete genomes of bacteria are now available. Comparative analysis of binding sites for transcriptional regulators is a powerful approach for functional gene annotation. Knowledge of transcriptional regulatory networks is essential for understanding cellular processes in bacteria. The global nitrogen cycle includes interconversion of nitrogen oxides between a number of redox states. Despite the importance of bacterial nitrogen oxides' metabolism for ecology and medicine, our understanding of their regulation is limited. In this study, the researchers have applied comparative genomic approaches to describe a regulatory network of genes involved in the nitrogen oxides' metabolism in bacteria. The described regulatory network involves five nitric oxide−responsive transcription factors with different DNA recognition motifs. Different combinations of these regulators appear to regulate expression of dozens of genes involved in nitric oxide detoxification and denitrification. The reconstructed network demonstrates considerable interconnection and evolutionary plasticity. Not only are genes shuffled between regulons in different genomes, but there is also considerable interaction between regulators. Overall, the system seems to be quite conserved; however, many regulatory interactions in the identified core regulatory network are taxon-specific. This study demonstrates the power of comparative genomics in the analysis of complex regulatory networks and their evolution.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
4
|
Cabello P, Pino C, Olmo-Mira MF, Castillo F, Roldán MD, Moreno-Vivián C. Hydroxylamine Assimilation by Rhodobacter capsulatus E1F1. J Biol Chem 2004; 279:45485-94. [PMID: 15322098 DOI: 10.1074/jbc.m404417200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodobacter capsulatus E1F1 grows phototrophically with nitrate as nitrogen source. Using primers designed for conserved motifs in bacterial assimilatory nitrate reductases, a 450-bp DNA was amplified by PCR and used for the screening of a genomic library. A cosmid carrying an insert with four SalI fragments of 2.8, 4.1, 4.5, and 5.8 kb was isolated, and DNA sequencing revealed that it contains a nitrate assimilation (nas) gene region, including the hcp gene coding for a hybrid cluster protein (HCP). Expression of hcp is probably regulated by a nitrite-sensitive repressor encoded by the adjacent nsrR gene. A His(6)-HCP was overproduced in Escherichia coli and purified. HCP contained about 6 iron and 4 labile sulfide atoms per molecule, in agreement with the presence of both [2Fe-2S] and [4Fe-2S-2O] clusters, and showed hydroxylamine reductase activity, forming ammonia in vitro with methyl viologen as reductant. The apparent K(m) values for NH(2)OH and methyl viologen were 1 mM and 7 microM, respectively, at the pH and temperature optima (9.3 and 40 degrees C). The activity was oxygen-sensitive and was inhibited by sulfide and iron reagents. R. capsulatus E1F1 grew phototrophically, but not heterotrophically, with 1 mM NH(2)OH as nitrogen source, and up to 10 mM NH(2)OH was taken up by anaerobic resting cells. Ammonium was transiently accumulated in the media, and its assimilation was prevented by L-methionine-D,L-sulfoximine, a glutamine synthetase inhibitor. In addition, hydroxylamine- or nitrite-grown cells showed the higher hydroxylamine reductase activities. However, R. capsulatus B10S, a strain lacking the whole hcp-nas region, did not grow with 1 mM NH(2)OH. Also, E. coli cells overproducing HCP tolerate hydroxyl-amine better during anaerobic growth. These results suggest that HCP is involved in assimilation of NH(2)OH, a toxic product that could be formed during nitrate assimilation, probably in the nitrite reduction step.
Collapse
Affiliation(s)
- Purificación Cabello
- Departamento de Biología Vegetal, Area de Fisiología Vegetal, Edificio Celestino Mutis, 3 planta, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Körner H, Sofia HJ, Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 2003; 27:559-92. [PMID: 14638413 DOI: 10.1016/s0168-6445(03)00066-4] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Crp-Fnr regulators, named after the first two identified members, are DNA-binding proteins which predominantly function as positive transcription factors, though roles of repressors are also important. Among over 1200 proteins with an N-terminally located nucleotide-binding domain similar to the cyclic adenosine monophosphate (cAMP) receptor protein, the distinctive additional trait of the Crp-Fnr superfamily is a C-terminally located helix-turn-helix motif for DNA binding. From a curated database of 369 family members exhibiting both features, we provide a protein tree of Crp-Fnr proteins according to their phylogenetic relationships. This results in the assembly of the regulators ArcR, CooA, CprK, Crp, Dnr, FixK, Flp, Fnr, FnrN, MalR, NnrR, NtcA, PrfA, and YeiL and their homologs in distinct clusters. Lead members and representatives of these groups are described, placing emphasis on the less well-known regulators and target processes. Several more groups consist of sequence-derived proteins of unknown physiological roles; some of them are tight clusters of highly similar members. The Crp-Fnr regulators stand out in responding to a broad spectrum of intracellular and exogenous signals such as cAMP, anoxia, the redox state, oxidative and nitrosative stress, nitric oxide, carbon monoxide, 2-oxoglutarate, or temperature. To accomplish their roles, Crp-Fnr members have intrinsic sensory modules allowing the binding of allosteric effector molecules, or have prosthetic groups for the interaction with the signal. The regulatory adaptability and structural flexibility represented in the Crp-Fnr scaffold has led to the evolution of an important group of physiologically versatile transcription factors.
Collapse
Affiliation(s)
- Heinz Körner
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, PF 6980, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
6
|
Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D, Blattner FR. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl Environ Microbiol 2000; 66:3310-29. [PMID: 10919786 PMCID: PMC92150 DOI: 10.1128/aem.66.8.3310-3329.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.
Collapse
|
7
|
van den Berg WA, Hagen WR, van Dongen WM. The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:666-76. [PMID: 10651802 DOI: 10.1046/j.1432-1327.2000.01032.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnetism and a novel type of hybrid [4Fe-2S-2O] cluster, which can attain four redox states. Genomic sequencing reveals that genes encoding putative hybrid-cluster proteins are present in a range of bacterial and archaeal species. In this paper we describe the isolation and spectroscopic characterization of the hybrid-cluster protein from Escherichia coli. EPR spectroscopy shows the presence of a hybrid cluster in the E. coli protein with characteristics similar to those in the proteins of anaerobic sulfate reducers. EPR spectra of the reduced E. coli hybrid-cluster protein, however, give evidence for the presence of a [2Fe-2S] cluster instead of a [4Fe-4S] cluster. The hcp gene encoding the hybrid-cluster protein in E. coli and other facultative anaerobes occurs, in contrast with hcp genes in obligate anaerobic bacteria and archaea, in a small operon with a gene encoding a putative NADH oxidoreductase. This NADH oxidoreductase was also isolated and shown to contain FAD and a [2Fe-2S] cluster as cofactors. It catalysed the reduction of the hybrid-cluster protein with NADH as an electron donor. Midpoint potentials (25 degrees C, pH 7.5) for the Fe/S clusters in both proteins indicate that electrons derived from the oxidation of NADH (Em NADH/NAD+ couple: -320 mV) are transferred along the [2Fe-2S] cluster of the NADH oxidoreductase (Em = -220 mV) and the [2Fe-2S] cluster of the hybrid-cluster protein (Em = -35 mV) to the hybrid cluster (Em = -50, +85 and +365 mV for the three redox transitions). The physiological function of the hybrid-cluster protein has not yet been elucidated. The protein is only detected in the facultative anaerobes E. coli and Morganella morganii after cultivation under anaerobic conditions in the presence of nitrate or nitrite, suggesting a role in nitrate-and/or nitrite respiration.
Collapse
Affiliation(s)
- W A van den Berg
- Department of Biomolecular Sciences, Wageningen University, The Netherlands.
| | | | | |
Collapse
|
8
|
Bachrach G, Colston MJ, Bercovier H, Bar-Nir D, Anderson C, Papavinasasundaram KG. A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):297-303. [PMID: 10708368 DOI: 10.1099/00221287-146-2-297] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 9.2 kb cryptic Mycobacterium fortuitum plasmid, pMF1, was isolated from strain 110 and its restriction map constructed. A 4.2 kb HindIII fragment of pMF1 was found to support replication in mycobacteria and this fragment was cloned and sequenced to characterize the replication elements of the plasmid. Computer analysis identified a putative Rep protein (362 amino acids) with high homology to the putative Rep protein of the Mycobacterium celatum plasmid pCLP and limited homology, mostly in the N-terminal region, to the Rep proteins of Mycobacterium avium pLR7, M. fortuitum pJAZ38 and Mycobacterium scrofulaceum pMSC262. A region containing a putative ori site was located upstream of the rep gene; this region displayed high homology at the nucleotide level with the predicted ori of pCLP and pJAZ38. A plasmid carrying the 4.2 kb HindIII fragment and a kanamycin resistance marker, designated pBP4, was maintained as a single-copy plasmid in Mycobacterium smegmatis and was stably inherited in the absence of antibiotic selection. Plasmid pBP4 was incompatible with the pJAZ38 replicon but was compatible with the widely used pAL5000 replicon, indicating that among the mycobacterial vectors now available there are two incompatibility groups. Significantly, the plasmid was able to replicate in the pathogen Mycobacterium tuberculosis, making it a useful tool for gene expression studies. To provide a choice of restriction sites and easy manipulation, a 2.1 kb fragment containing the minimal replication region was cloned to make the mycobacterial shuttle vector pBP10, which showed similar stability to pBP4.
Collapse
Affiliation(s)
- Gilad Bachrach
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - M Joseph Colston
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Herve Bercovier
- Department of Clinical Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem, PO Box 12272, Israel2
| | - Dror Bar-Nir
- Department of Clinical Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem, PO Box 12272, Israel2
| | - Colin Anderson
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - K G Papavinasasundaram
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| |
Collapse
|
9
|
Pereira AS, Tavares P, Krebs C, Huynh BH, Rusnak F, Moura I, Moura JJ. Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli. Biochem Biophys Res Commun 1999; 260:209-15. [PMID: 10381368 DOI: 10.1006/bbrc.1999.0748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mössbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.
Collapse
Affiliation(s)
- A S Pereira
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Vollack KU, Härtig E, Körner H, Zumft WG. Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 1999; 31:1681-94. [PMID: 10209742 DOI: 10.1046/j.1365-2958.1999.01302.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas stutzeri is a facultative anaerobic bacterium with the capability of denitrification. In searching for regulators that control the expression of this trait in response to oxygen withdrawal, we have found an unprecedented multiplicity of four genes encoding transcription factors of the FNR family. The fnrA gene encodes a genuine FNR-type regulator, which is expressed constitutively and controls the cytochrome cbb3-type terminal oxidase (the cco operon), cytochrome c peroxidase (the ccp gene) and the oxygen-independent coproporphyrinogen III oxidase (the hemN gene), in addition to its previously demonstrated role in arginine catabolism (the arc operon). The fnr homologues dnrD, dnrE and dnrS encode regulators of a new subgroup within the FNR family. Their main distinctive feature is the lack of cysteine residues for complexing the [4Fe-4S] centre of redox-active FNR-type regulators. However, they form a phylogenetic lineage separate from the FixK branch of FNR proteins, which also lack this cysteine signature. We have studied the expression of the dnr genes under aerobic, oxygen-limited and denitrifying conditions. DnrD is a key regulator of denitrification by selective activation of the genes for cytochrome cd1 nitrite reductase and NO reductase. The dnrD gene is part of the 30 kb region carrying denitrification genes of P. stutzeri. Transcription of dnrD was activated in O2-limited cells and particularly strongly in denitrifying cells, but was not under the control of FnrA. In response to denitrifying growth conditions, dnrD was transcribed as part of an operon together with genes downstream and upstream of dnrD. dnrS was found about 9 kb upstream of dnrD, next to the nrdD gene for anaerobic ribonucleotide reductase. The transcription of dnrS required FnrA in O2-limited cells. Mutation of dnrS affected nrdD and the expression of ferredoxin I as an element of the oxidative stress response. The dnrE gene is part of the nar region encoding functions for respiratory nitrate reduction. We found the highest amount of dnrE transcripts in aerobically nitrate-challenged cells. The gene was transcribed from two promoters, P1 and P2, of which promoter P1 was under the control of the nitrate response regulator NarL. The multiplicity of FNR factors in P. stutzeri underlines the versatility of the FNR scaffold to serve for transcriptional regulation directed at anaerobic or nitrate-activated metabolic processes.
Collapse
Affiliation(s)
- K U Vollack
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Germany
| | | | | | | |
Collapse
|
11
|
Arendsen AF, Lindley PF. The Search for A “Prismane” Fe–S Protein. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60079-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Dominy CN, Coram NJ, Rawlings DE. Sequence analysis of plasmid pTF5, a 19.8-kb geographically widespread member of the Thiobacillus ferrooxidans pTFI91-like plasmid family. Plasmid 1998; 40:50-7. [PMID: 9657933 DOI: 10.1006/plas.1998.1344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most important features of plasmid pTF5, a 19,793-bp plasmid that was isolated from Thiobacillus ferrooxidans ATCC33020, are presented. The plasmid contained at least 14 complete open reading frames (ORFs), most of which had clear amino acid sequence similarity to previously identified proteins. The majority of ORFs were related to proteins commonly found on plasmids such as replication-, partition-, and stability-associated proteins or on transposons such as transposases, an invertase, and a resolvase. Products of three of the ORFs were related to redox-active proteins and possibly constitute an electron transport system. Plasmids with restriction endonuclease maps identical to that of pTF5 have been widely reported among T. ferrooxidans strains, and in this study, pTF5 was itself shown to be a member of the widely distributed pTFI91 T. ferrooxidans plasmid family. A comparison of restriction endonuclease maps indicated that a pTFI91-like plasmid (9.8 kb) appeared to be contained entirely within pTF5.
Collapse
Affiliation(s)
- C N Dominy
- Department of Microbiology, University of Cape Town, Rondebosch, 7700, South Africa
| | | | | |
Collapse
|