1
|
Avendaño R, Muñoz-Montero S, Rojas-Gätjens D, Fuentes-Schweizer P, Vieto S, Montenegro R, Salvador M, Frew R, Kim J, Chavarría M, Jiménez JI. Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440. Microb Biotechnol 2023; 16:931-946. [PMID: 36682039 PMCID: PMC10128140 DOI: 10.1111/1751-7915.14215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
Collapse
Affiliation(s)
- Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Manuel Salvador
- Biotechnology Applications, IDENER Research & Development, Seville, Spain
| | - Rufus Frew
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu, Korea
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose I Jiménez
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
2
|
Two Different Quinohemoprotein Amine Dehydrogenases Initiate Anaerobic Degradation of Aromatic Amines in Aromatoleum aromaticum EbN1. J Bacteriol 2019; 201:JB.00281-19. [PMID: 31138631 DOI: 10.1128/jb.00281-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
Aromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacterium Aromatoleum aromaticum EbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two heme c cofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2β2γ2 composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αβγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCE The known substrate spectrum of A. aromaticum EbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.
Collapse
|
3
|
Yip ES, Burnside DM, Cianciotto NP. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. MICROBIOLOGY-SGM 2010; 157:868-878. [PMID: 21178169 PMCID: PMC3081086 DOI: 10.1099/mic.0.046490-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Denise M Burnside
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Lee JH, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2164-81. [PMID: 17706591 DOI: 10.1016/j.bbamem.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 03/22/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022]
Abstract
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
5
|
Sanders C, Deshmukh M, Astor D, Kranz RG, Daldal F. Overproduction of CcmG and CcmFH(Rc) fully suppresses the c-type cytochrome biogenesis defect of Rhodobacter capsulatus CcmI-null mutants. J Bacteriol 2005; 187:4245-56. [PMID: 15937187 PMCID: PMC1151712 DOI: 10.1128/jb.187.12.4245-4256.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmH(Rc) (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmH(Rc) is needed to completely overcome the role of CcmI during the biogenesis of c-type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis.
Collapse
Affiliation(s)
- Carsten Sanders
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
6
|
Cianciotto NP, Cornelis P, Baysse C. Impact of the bacterial type I cytochromecmaturation system on different biological processes. Mol Microbiol 2005; 56:1408-15. [PMID: 15916594 DOI: 10.1111/j.1365-2958.2005.04650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the alpha-, beta- and gamma-Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c-type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation. These various data suggest that Ccm proteins may perform one or more functions in addition to Ccm, which are critical for bacterial physiology and growth. Novel hypotheses that should be explored include the utilization of Ccm-associated haem for processes besides attachment to apocytochrome c, the export of a non-haem compound through the Ccm system, and the negative effects of protoporphyrin IX accumulation.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
7
|
Naylor J, Cianciotto NP. Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 2005; 241:249-56. [PMID: 15598540 DOI: 10.1016/j.femsle.2004.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 09/28/2004] [Accepted: 10/15/2004] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, an intracellular parasite of macrophages and protozoa, requires iron for extra- and intracellular growth. In a new screen of a mutant library of L. pneumophila for strains defective for growth on agar media lacking supplemental iron, seven mutants were obtained. All of the mutants had a disruption in the cytochrome c maturation (ccm) locus; two had insertions in ccmB, two in ccmC, and three in ccmF. The ccm mutants were unable to multiply within macrophage-like cells (i.e., U937 and THP-1 cells) and Hartmannella vermiformis amoebae. A competition assay in A/J mice revealed that ccm mutants are severely defective for growth within the lung. Taken together, these data confirm that ccm and cytochrome c maturation proteins are required for L. pneumophila growth in low iron, intracellular infection, and virulence.
Collapse
Affiliation(s)
- Jennifer Naylor
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, IL 60611, USA
| | | |
Collapse
|
8
|
Stevens JM, Gordon EH, Ferguson SJ. Overproduction of CcmABCDEFGH restores cytochrome c maturation in a DsbD deletion strain of E. coli: another route for reductant? FEBS Lett 2004; 576:81-5. [PMID: 15474015 DOI: 10.1016/j.febslet.2004.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The multidomain transmembrane protein DsbD is essential for cytochrome c maturation (Ccm) in Escherichia coli and transports reductant to the otherwise oxidising environment of the bacterial periplasm. The Ccm proteins ABCDEFGH are also essential and we show that the overproduction of these proteins can unexpectedly complement for the absence of DsbD in a deletion strain by partially restoring the production of an exogenous c-type cytochrome under aerobic and anaerobic conditions. This suggests that one or more of the Ccm proteins can provide reductant to the periplasm. The Ccm proteins do not, however, restore the normal disulfide mis-isomerisation phenotype of the deletion strain, as shown by assay of the multidisulfide-bonded enzyme urokinase.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
9
|
Baysse C, Matthijs S, Schobert M, Layer G, Jahn D, Cornelis P. Co-ordination of iron acquisition, iron porphyrin chelation and iron-protoporphyrin export via the cytochrome c biogenesis protein CcmC in Pseudomonas fluorescens. MICROBIOLOGY-SGM 2004; 149:3543-3552. [PMID: 14663086 DOI: 10.1099/mic.0.26566-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cytoplasmic membrane protein CcmC is, together with other Ccm proteins, a component for the maturation of c-type cytochromes in Gram-negative bacteria. A Pseudomonas fluorescens ATCC 17400 ccmC mutant is cytochrome c-deficient and shows considerably reduced production of the two siderophores pyoverdine and quinolobactin, paralleled by a general inability to utilize various iron sources, with the exception of haem. The ccmC mutant accumulates in a 5-aminolevulinic acid-dependent synthesis a reddish, fluorescent pigment identified as protoporphyrin IX. As a consequence a visA phenotype similar to that of a ferrochelatase-deficient hemH mutant characterized by drastically reduced growth upon light exposure was observed for the ccmC mutant. The defect of iron-protoporphyrin formation was further demonstrated by the failure of ccmC cell-free proteinase K-treated extracts to stimulate the growth of a haem auxotrophic hemH indicator strain, compared to similarly prepared wild-type extracts. In addition, the ccmC mutant did not sustain hemH growth in cross-feeding experiments while the wild-type did. Significantly reduced resistance to oxidative stress mediated by haem-containing catalases was observed for the ccmC mutant. A double hemH ccmC mutant could not be obtained in the presence of external haem without the hemH gene in trans, indicating that the combination of the two mutations is lethal. It was concluded that CcmC, apart from its known function in cytochrome c biogenesis, plays a role in haem biosynthesis. A function in the regulatory co-ordination of iron acquisition via siderophores, iron insertion into porphyrin via ferrochelatase and iron-protoporphyrin export for cytochrome c formation is predicted.
Collapse
Affiliation(s)
- Christine Baysse
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Max Schobert
- Institute for Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Gunhild Layer
- Institute for Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Cinege G, Kereszt A, Kertész S, Balogh G, Dusha I. The roles of different regions of the CycH protein in c-type cytochrome biogenesis in Sinorhizobium meliloti. Mol Genet Genomics 2004; 271:171-9. [PMID: 14758542 DOI: 10.1007/s00438-003-0968-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 12/02/2003] [Indexed: 11/26/2022]
Abstract
Cytochrome c heme lyases encoded by the Sinorhizobium meliloti cycHJKL operon are responsible for generating the covalent bond between the heme prosthetic group and apocytochromes c. The CycH protein with its presumably membrane-associated N-terminal and periplasmic C-terminal parts is thought to be responsible for binding apocytochrome and presenting it to the heme ligation machinery. We propose that these two modules of CycH play roles in different functions of the protein. The N-terminal 96 amino acids represent an active subdomain of the protein, which is able to complement the protoporphyrin IX (PPIX) accumulation phenotype of the cycH mutant strain AT342, suggesting that it is involved in the final steps of heme C biosynthesis. Furthermore, three tetratricopeptide (TPR) domains have been identified in the C-terminal periplasmic region of the CycH protein. TPR domains are known to mediate protein-protein interactions. Each of these CycH domains is absolutely required for protein function, since plasmid constructs carrying cycH genes with in-frame TPR deletions were not able to complement cycH mutants for their nitrate reductase (Rnr-) and nitrogen-fixing (Fix-) phenotypes. We also found that the 309-amino acid N-terminal portion of the CycH, which includes all the TPR domains, is able to mediate the assembly of the c-type cytochromes required for the Rnr+ phenotype. In contrast, only the full-length protein confers the ability to fix nitrogen.
Collapse
Affiliation(s)
- G Cinege
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, PO Box 521, 6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
11
|
Allen JWA, Daltrop O, Stevens JM, Ferguson SJ. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci 2003; 358:255-66. [PMID: 12594933 PMCID: PMC1693095 DOI: 10.1098/rstb.2002.1192] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C-type cytochromes are a structurally diverse group of haemoproteins, which are related by the occurrence of haem covalently attached to a polypeptide via two thioether bonds formed by the vinyl groups of haem and cysteine side chains in a CXXCH peptide motif. Remarkably, three different post-translational systems for forming these cytochromes have been identified. The evolution of both the proteins themselves and the biogenesis systems poses many questions to which answers are currently being sought. In this article we review the progress that has been made in understanding the need for covalent attachment of haem to proteins in cytochromes c and the complex systems involved in their formation.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
12
|
Viswanathan VK, Kurtz S, Pedersen LL, Abu-Kwaik Y, Krcmarik K, Mody S, Cianciotto NP. The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 2002; 70:1842-52. [PMID: 11895946 PMCID: PMC127876 DOI: 10.1128/iai.70.4.1842-1852.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we obtained a Legionella pneumophila mutant, NU208, that is hypersensitive to iron chelators when grown on standard Legionella media. Here, we demonstrate that NU208 is also impaired for growth in media that simply lack their iron supplement. The mutant was not, however, impaired for the production of legiobactin, the only known L. pneumophila siderophore. Importantly, NU208 was also highly defective for intracellular growth in human U937 cell macrophages and Hartmannella and Acanthamoeba amoebae. The growth defect within macrophages was exacerbated by treatment of the host cells with an iron chelator. Sequence analysis demonstrated that the transposon disruption in NU208 lies within an open reading frame that is highly similar to the cytochrome c maturation gene, ccmC. CcmC is generally recognized for its role in the heme export step of cytochrome biogenesis. Indeed, NU208 lacked cytochrome c. Phenotypic analysis of two additional, independently derived ccmC mutants confirmed that the growth defect in low-iron medium and impaired infectivity were associated with the transposon insertion and not an entirely spontaneous second-site mutation. trans-complementation analysis of NU208 confirmed that L. pneumophila ccmC is required for cytochrome c production, growth under low-iron growth conditions, and at least some forms of intracellular infection. Although ccm genes have recently been implicated in iron assimilation, our data indicate, for the first time, that a ccm gene can be required for bacterial growth in an intracellular niche. Complete sequence analysis of the ccm locus from strain 130b identified the genes ccmA-H. Interestingly, however, we also observed that a 1.8-kb insertion sequence element was positioned between ccmB and ccmC. Southern hybridizations indicated that the open reading frame within this element (ISLp 1) was present in multiple copies in some strains of L. pneumophila but was absent from others. These findings represent the first evidence for a transposable element in Legionella and the first identification of an L. pneumophila strain-specific gene.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Johnston AW, Yeoman KH, Wexler M. Metals and the rhizobial-legume symbiosis--uptake, utilization and signalling. Adv Microb Physiol 2002; 45:113-56. [PMID: 11450108 DOI: 10.1016/s0065-2911(01)45003-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we consider how the nitrogen-fixing root nodule bacteria, the 'rhizobia', acquire various metals, paying particular attention to the uptake of iron. We also review the literature pertaining to the roles of molybdenum and nickel in the symbiosis with legumes. We highlight some gaps in our knowledge, for example the lack of information on how rhizobia acquire molybdenum. We examine the means whereby different metals affect rhizobial physiology and the role of metals as signals for gene regulation. We describe the ways in which genetics has shown (or not) if, and how, particular metal uptake and/or metal-mediated signalling pathways are required for the symbiotic interaction with legumes.
Collapse
Affiliation(s)
- A W Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
14
|
Fabianek RA, Hennecke H, Thöny-Meyer L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 2000; 24:303-16. [PMID: 10841975 DOI: 10.1111/j.1574-6976.2000.tb00544.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.
Collapse
Affiliation(s)
- R A Fabianek
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Reyes1 JD, Tabche1 M, Morera C, Girard ML, Romero D, Krol E, Miranda J, Soberón M. Expression pattern of Rhizobium etli ccmIEFH genes involved in c-type cytochrome maturation. Gene 2000; 250:149-57. [PMID: 10854788 DOI: 10.1016/s0378-1119(00)00176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In different bacterial species, ccmIEFH genes have been suggested to code for subunits of a bacterial haem-lyase catalyzing the covalent attachment of haem to c-type apoproteins. In Rhizobium etli CE3 there are two copies of ccmIEFH: one in the chromosome and the other located in plasmid pf. However, the null phenotype of chromosomal ccmF mutant indicates that the gene locus of plasmid pf is not functional. Two ccmI chromosomal mutants, previously isolated, produced detectable levels of c-type cytochromes under certain culture conditions in contrast with the ccmF mutant, suggesting that ccmF could be transcribed independently. The transcriptional organization of ccmIEFH operon was established. Two promoters from the chromosomal locus were mapped by primer extension, one located upstream of ccmI and the second located upstream of ccmF. The regulation of the expression of both promoters was studied using appropriate lacZ gene fusions (ccmI-lacZ and ccmEF-lacZ). The ccmI-lacZ gene fusion was expressed in complex medium, during exponential growth, under microaerobic conditions and in a R. etli mutant that accumulates reducing power, conditions where a higher respiration rate could be limited by c-type cytochrome content. The ccmEF-lacZ fusion was also primarily expressed in complex medium and under microaerophilic conditions. The finding of two independent promoters in this gene locus could suggest that the step catalyzed by CcmFH could be a rate-limiting step for c-type cytochrome assembly under certain culture conditions.
Collapse
Affiliation(s)
- J D Reyes1
- Departamento de Biología Molecular de Plantas. Instituto de Biotecnología, U.N.A.M., Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).
Collapse
Affiliation(s)
- N E Le Brun
- Department of Microbiology, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
17
|
Deshmukh M, Brasseur G, Daldal F. Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol 2000; 35:123-38. [PMID: 10632883 DOI: 10.1046/j.1365-2958.2000.01683.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following chemical mutagenesis and screening for the inability to grow by photosynthesis and the absence of cyt cbb3 oxidase activity, two c-type cytochrome (cyt)-deficient mutants, 771 and K2, of Rhodobacter capsulatus were isolated. Both mutants were completely deficient in all known c-type cyts, and could not be complemented by the previously known cyt c biogenesis genes of R. capsulatus. Complementation of 771 and K2 with a wild-type chromosomal library led to the identification of two novel genes, cycJ and ccdA respectively. The cycJ is highly homologous to ccmE/cycJ, encountered in various Gram-negative species. Unlike in other species, where cycJ is a part of an operon essential for cyt c biogenesis, in R. capsulatus, it is located immediately downstream from argC, involved in arginine biosynthesis. Mutation of its universally conserved histidine residue, which is critical for its proposed haem chaperoning role, to an alanine led to loss of its function. All R. capsulatus cycJ mutants studied so far excrete copious amounts of coproporphyrin and protoporphyrin when grown on enriched media, suggesting that its product is also a component of the haem delivery branch of cyt c biogenesis in this species. In contrast, the R. capsulatus ccdA was homologous to the cyt c biogenesis gene ccdA, found in the gram-positive bacterium Bacillus subtilis, and to the central region of dipZ, encoding a protein disulphide reductase required for cyt c biogenesis in Escherichia coli. Membrane topology of CcdA was established in R. capsulatus using ccdA:phoA and ccdA :lacZ gene fusions. The deduced topology revealed that the two conserved cysteine residues of CcdA are, as predicted, membrane embedded. Mutagenesis of these cysteines showed that both are required for the function of CcdA in cyt c biogenesis. This study demonstrated for the first time that CcdA homologues are also required for cyt c biogenesis in some gram-negative bacteria such as R. capsulatus.
Collapse
Affiliation(s)
- M Deshmukh
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Tichy M, Vermaas W. Accumulation of pre-apocytochrome f in a Synechocystis sp. PCC 6803 mutant impaired in cytochrome c maturation. J Biol Chem 1999; 274:32396-401. [PMID: 10542282 DOI: 10.1074/jbc.274.45.32396] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation involves heme transport and covalent attachment of heme to the apoprotein. The 5' end of the ccsB gene, which is involved in the maturation process and resembles the ccs1 gene from Chlamydomonas reinhardtii, was replaced by a chloramphenicol resistance cartridge in the cyanobacterium Synechocystis sp. PCC 6803. The resulting Delta(M1-A24) mutant lacking the first 24 ccsB codons grew only under anaerobic conditions. The mutant retained about 20% of the wild-type amount of processed cytochrome f with heme attached, apparently assembled in a functional cytochrome b(6)f complex. Moreover, the mutant accumulated unprocessed apocytochrome f in its membrane fraction. A pseudorevertant was isolated that regained the ability to grow under aerobic conditions. The locus of the second-site mutation was mapped to ccsB, and the mutation resulted in the formation of a new potential start codon in the intergenic region, between the chloramphenicol resistance marker and ccsB, in frame with the remaining part of ccsB. In this pseudorevertant the amount of holocyt f increased, whereas that of unprocessed apocytochrome f decreased. We suggest that the original deletion mutant Delta(M1-A24) expresses an N-terminally truncated version of the protein. The stable accumulation of unprocessed apocytochrome f in membranes of the Delta(M1-A24) mutant may be explained by its association with truncated and only partially functional CcsB protein resulting in protection from degradation. Our attempt to delete the first 244 codons of ccsB in Synechocystis sp. PCC 6803 was not successful, suggesting that this would lead to a lack of functional cytochrome b(6)f complex. The results suggest that the CcsB protein is an apocytochrome chaperone, which together with CcsA may constitute part of cytochrome c lyase.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | |
Collapse
|
19
|
Page MD, Ferguson SJ. Mutational analysis of the Paracoccus denitrificans c-type cytochrome biosynthetic genes ccmABCDG: disruption of ccmC has distinct effects suggesting a role for CcmC independent of CcmAB. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3047-3057. [PMID: 10589712 DOI: 10.1099/00221287-145-11-3047] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Each of the Paracoccus denitrificans genes in the c-type cytochrome biogenesis gene cluster ccmABCDG, plus the two flanking genes ORF117 and hisH, were individually disrupted by omega insertion. Resultant phenotypes were restored to the wild-type by complementation from a set of plasmids. All of the ccm genes, but neither ORF117 nor hisH, were required for c-type cytochrome biogenesis; only ccmG was also implicated in the biosynthesis of cytochrome aa3. Disruption of ccmC or ccmG resulted in failure to grow on rich media, but disruption of ccmA, ccmB or ccmD did not. The ccmC mutant, but not the ccmA, ccmB or ccmD mutants, also exhibited the increased sensitivity to growth inhibition by oxidized thiol compounds previously observed for the ccmG mutant. In contrast to the ccmG mutant, however, growth of the ccmC mutant on rich media could not be restored by DTT. Siderophore biosynthesis and/or secretion by P. denitrificans was also attenuated by disruption of ccmC and ccmG but not of ccmA, ccmB or ccmD. These results indicate that CcmC can function independently of CcmA, CcmB and CcmD despite other evidence that these gene products form an ATP-binding cassette (ABC)-type-transporter with the subunit composition (CcmA)2-CcmB-CcmC or (CcmA)2-CcmB-CcmC-CcmD, and also suggest a possible link between the functions of CcmC and CcmG.
Collapse
Affiliation(s)
- M Dudley Page
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, and Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK1
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK, and Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK1
| |
Collapse
|
20
|
Yeoman KH, May AG, deLuca NG, Stuckey DB, Johnston AW. A putative ECF sigma factor gene, rpol, regulates siderophore production in Rhizobium leguminosarum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:994-999. [PMID: 10550895 DOI: 10.1094/mpmi.1999.12.11.994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cloned Rhizobium leguminosarum gene, termed rpoI, when transferred to wild-type strains, caused overproduction of the siderophore vicibactin. An rpoI mutant was defective in Fe uptake but was unaffected in symbiotic N2 fixation. The RpoI gene product was similar in sequence to extra-cytoplasmic sigma factors of RNA polymerase. Transcription of rpoI was reduced in cells grown in medium that was replete with Fe.
Collapse
Affiliation(s)
- K H Yeoman
- School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | | | |
Collapse
|
21
|
Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, van Spanning RJ. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 1998; 62:1046-78. [PMID: 9841665 PMCID: PMC98939 DOI: 10.1128/mmbr.62.4.1046-1078.1998] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paracoccus denitrificans and its near relative Paracoccus versutus (formerly known as Thiobacilllus versutus) have been attracting increasing attention because the aerobic respiratory system of P. denitrificans has long been regarded as a model for that of the mitochondrion, with which there are many components (e.g., cytochrome aa3 oxidase) in common. Members of the genus exhibit a great range of metabolic flexibility, particularly with respect to processes involving respiration. Prominent examples of flexibility are the use in denitrification of nitrate, nitrite, nitrous oxide, and nitric oxide as alternative electron acceptors to oxygen and the ability to use C1 compounds (e.g., methanol and methylamine) as electron donors to the respiratory chains. The proteins required for these respiratory processes are not constitutive, and the underlying complex regulatory systems that regulate their expression are beginning to be unraveled. There has been uncertainty about whether transcription in a member of the alpha-3 Proteobacteria such as P. denitrificans involves a conventional sigma70-type RNA polymerase, especially since canonical -35 and -10 DNA binding sites have not been readily identified. In this review, we argue that many genes, in particular those encoding constitutive proteins, may be under the control of a sigma70 RNA polymerase very closely related to that of Rhodobacter capsulatus. While the main focus is on the structure and regulation of genes coding for products involved in respiratory processes in Paracoccus, the current state of knowledge of the components of such respiratory pathways, and their biogenesis, is also reviewed.
Collapse
Affiliation(s)
- S C Baker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Gaballa A, Baysse C, Koedam N, Muyldermans S, Cornelis P. Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Mol Microbiol 1998; 30:547-55. [PMID: 9822820 DOI: 10.1046/j.1365-2958.1998.01085.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inner membrane protein CcmC (CytA) of Pseudomonas fluorescens ATCC17400, which has homologues in several bacteria and plant mitochondria, is needed for the biogenesis of cytochrome c. A CcmC-deficient mutant is also compromised in the production and utilization of pyoverdine, the high-affinity fluorescent siderophore. A topological model for CcmC, based on the analysis of alkaline phosphatase fusions, predicts six membrane-spanning regions with three periplasmic loops. Site-directed mutagenesis was used in order to assess the importance of some periplasm-exposed residues, conserved in all CcmC homologues, for cytochrome c biogenesis, and pyoverdine production/utilization. Despite the conservation of the residues His-61, Val-62 and Pro-63 in the first periplasmic loop, and Leu-184, His-185 and Gln-186 in the third periplasmic loop, their simultaneous replacement with Ala only partially affected cytochrome c biogenesis and pyoverdine production/utilization. Simultaneous replacements of residues Trp-115 and Gly-116 in the second periplasmic loop substantially affected pyoverdine production/utilization but not cytochrome c production. An Ala substitution of Asp-127, in the second periplasmic loop, resulted in decreased production of cytochrome c, slower growth in conditions of anaerobiosis and reduced pyoverdine production. On the other hand, a mutation in Trp-126, also in the second periplasmic loop, totally suppressed the production of cytochrome c, whereas it had no effect on the production and utilization of pyoverdine. These results show a differential involvement of amino acid residues in periplasmic domains of CcmC in cytochrome c biogenesis and pyoverdine production/utilization.
Collapse
Affiliation(s)
- A Gaballa
- Department of Immunology, Parasitology, and Ultrastructure, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
de Vrind JP, Brouwers GJ, Corstjens PL, den Dulk J, de Vrind-de Jong EW. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 1998; 64:3556-62. [PMID: 9758767 PMCID: PMC106464 DOI: 10.1128/aem.64.10.3556-3562.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.
Collapse
Affiliation(s)
- J P de Vrind
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Page MD, Sambongi Y, Ferguson SJ. Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem Sci 1998; 23:103-8. [PMID: 9581502 DOI: 10.1016/s0968-0004(98)01173-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biogenesis of bacterial c-type cytochromes generally involves many gene products--some of which may also have roles in other processes--and their interaction with the disulphide-bond-forming system of the bacterial periplasm. However, in some bacteria a simpler process appears to operate that might be related to the formation of c-type cytochromes in thylakoids of photosynthetic cells. The corresponding process in fungal mitochondria is distinct.
Collapse
Affiliation(s)
- M D Page
- Department of Biochemistry and Oxford Centre for Molecular Sciences, University of Oxford, UK
| | | | | |
Collapse
|