Takenaka S, Lim L, Fukami T, Yokota S, Doi M. Isolation and characterization of an aspartic protease able to hydrolyze and decolorize heme proteins from Aspergillus glaucus.
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019;
99:2042-2047. [PMID:
30187473 DOI:
10.1002/jsfa.9339]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND
The xerophilic Aspergillus molds, Aspergillus glaucus and Aspergillus repens, have been used in the ripening and fermentation of dried tuna bonito (katsuobushi). These molds, and especially their extracellular hydrolytic enzymes, may also be of wider industrial value.
RESULTS
Aspergillus glaucus strain MA0196 produces different types of hydrolytic enzymes, including amylase, serine protease, aspartic protease, lipase and cellulase, depending on the composition of the medium. We characterized several of these enzymes, focusing on a glycosylated aspartic protease. The results showed that the lower the d-glucose concentration in the medium, the higher the degree of protease glycosylation, with excess glycosylation tending to decrease protease activity. The molecular mass of the glycosylated protease as determined by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis was 243 and 253 kDa, respectively. The chemically deglycosylated protease had a molecular mass of only 46 kDa. The amount of myoglobin-decolorizing activity was similar to that of a previously reported aspartic protease from A. repens strain MK82. However, the strain MA0196 protease more broadly hydrolyzed myoglobin and hemoglobins than did the strain MK82 protease.
CONCLUSION
The results of the present study demonstrate the potential utility of Aspergillus molds as a functionally new microbial resource for industrial applications such as the bleaching of heme proteins. © 2018 Society of Chemical Industry.
Collapse