1
|
Alaidaroos BA. Rare Actinomycetes from Undiscovered Sources as a Source of Novel Antimicrobial Agents to Control Multidrug-Resistant Bacteria. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2022. [DOI: 10.51847/dpfaj9fiep] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Kianinejad N, Labbeiki G, Attar H. Effect of Castor Oil on Bioprocess Parameters of Erythromycin Fermentation by Saccharopolyspora Erythraea. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2827. [PMID: 35350638 PMCID: PMC8926314 DOI: 10.30498/ijb.2021.242170.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Increased economic competitiveness in the biopharmaceutical industry requires continuous improvement of bioprocesses. In this regard compositions of fermentation media have an important role in bioprocesses. OBJECTIVES The modification of the culture medium has proven effective in enhancing the yield and productivity of fermentation processes. The objective was to investigate the influence of castor oil as the main carbon source for Saccharopolyspora erythraea, on the yield of antibiotic fermentative production. MATERIAL AND METHODS The titer of erythromycin was evaluated in Saccharopolyspora erythraea cultures, containing various concentrations of castor oil, in comparison to the control culture containing rapeseed oil. RESULTS The results showed an enhancement in erythromycin production when 50 g.L-1and 40 g.L-1of castor oil were added to the fermentation culture instead of rapeseed oil, respectively. The highest amount of production was obtained on the eleventh day of fermentation time in all media. CONCLUSION Erythromycin production in the control medium was relatively less than that of the treatments, indicating that S. erythraea consumed castor oil as a rich alternative carbon source. The results show that castor oil was more suitable as a carbon source for erythromycin production than a medium containing rapeseed oil.
Collapse
Affiliation(s)
- Nazanin Kianinejad
- Department of Chemical Engineering, Faculty of Petrol Engineering and Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazal Labbeiki
- Department of biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hossein Attar
- Department of Chemical Engineering, Faculty of Petrol Engineering and Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Basik AA, Sanglier JJ, Yeo CT, Sudesh K. Microbial Degradation of Rubber: Actinobacteria. Polymers (Basel) 2021; 13:polym13121989. [PMID: 34204568 PMCID: PMC8235351 DOI: 10.3390/polym13121989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. This review entails the occurrence, physiology, biochemistry, and molecular characteristics of Actinobacteria with respect to its rubber degrading ability, and discusses possible technological applications based on the activity of Actinobacteria for treating rubber waste in a more environmentally responsible manner.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Jean-Jacques Sanglier
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Chia Tiong Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: ; Tel.: +60-4-6534367; Fax: +60-4-6565125
| |
Collapse
|
4
|
Cornell CR, Marasini D, Fakhr MK. Molecular Characterization of Plasmids Harbored by Actinomycetes Isolated From the Great Salt Plains of Oklahoma Using PFGE and Next Generation Whole Genome Sequencing. Front Microbiol 2018; 9:2282. [PMID: 30356833 PMCID: PMC6190872 DOI: 10.3389/fmicb.2018.02282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022] Open
Abstract
One of the unique features of actinomycetes, especially the genus Streptomyces, is the presence of linear plasmids. These range in size from 12 to 600 kb, and are often termed mega-plasmids. While many of the genes involved in secondary metabolite production reside in clusters on the chromosome, several studies have identified biosynthetic clusters on large linear plasmids that produce important secondary metabolites, including antibiotics. In this study, Pulse Field Gel Electrophoresis (PFGE) was used to screen 176 actinomycete isolates for the presence of plasmids; these bacterial strains were previously isolated from the Great Salt Plains of Oklahoma. Seventy-eight of the 176 actinomycete isolates (44%) contained plasmids. Several strains contained more than one plasmid, accounting for a total of 109 plasmids. Ten isolates showed extrachromosomal DNA larger than 200 kb, thus falling into the category of mega-plasmids. A subset of plasmids from 55 isolates was treated with S1 nuclease to determine topology; all plasmids examined appeared to be linear and ranged from ~55 to 400 kb. Eleven isolates were chosen for Whole Genome Next Generation Sequencing. From the 11 sequenced isolates, seven plasmids were partially assembled. While the majority of the genes identified on the plasmids coded for hypothetical proteins, others coded for general functions, stress response, and antibiotic and heavy metal resistance. Draft genome sequences of two mega-plasmid-bearing Streptomyces sp. strains, BF-3 and 4F, revealed the presence of genes involved in antibiotic production, antibiotic, and heavy metal resistance, osmoregulation, and stress response, which likely facilitate their survival in this extreme halophilic environment. To our knowledge, this is the first study to explore plasmids harbored by actinomycetes isolated from the Great Salt Plains of Oklahoma.
Collapse
Affiliation(s)
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
5
|
Abstract
Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution.
Collapse
Affiliation(s)
- Ralph Kirby
- Department of Life Sciences, Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Solanki R, Khanna M, Lal R. Bioactive compounds from marine actinomycetes. Indian J Microbiol 2008; 48:410-31. [PMID: 23100742 PMCID: PMC3476783 DOI: 10.1007/s12088-008-0052-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 06/12/2008] [Indexed: 11/28/2022] Open
Abstract
Actinomycetes are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Among its various genera, Streptomyces, Saccharopolyspora, Amycolatopsis, Micromonospora and Actinoplanes are the major producers of commercially important biomolecules. Several species have been isolated and screened from the soil in the past decades. Consequently the chance of isolating a novel actinomycete strain from a terrestrial habitat, which would produce new biologically active metabolites, has reduced. The most relevant reason for discovering novel secondary metabolites is to circumvent the problem of resistant pathogens, which are no longer susceptible to the currently used drugs. Existence of actinomycetes has been reported in the hitherto untapped marine ecosystem. Marine actinomycetes are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, insecticidal and enzyme inhibition. Bioactive compounds from marine actinomycetes possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens.
Collapse
Affiliation(s)
- Renu Solanki
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110 019 India
| | - Monisha Khanna
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110 019 India
| | - Rup Lal
- Molecular Biology Lab, Department of Zoology, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
7
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
8
|
Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 2007; 25:447-53. [PMID: 17369815 DOI: 10.1038/nbt1297] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/21/2007] [Indexed: 11/09/2022]
Abstract
Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3(2) and the closely related Streptomyces avermitilis. The S. erythraea genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of S. erythraea will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.
Collapse
Affiliation(s)
- Markiyan Oliynyk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|
10
|
Hosted TJ, Wang T, Horan AC. Characterization of the Streptomyces lavendulae IMRU 3455 linear plasmid pSLV45. Microbiology (Reading) 2004; 150:1819-1827. [PMID: 15184568 DOI: 10.1099/mic.0.26994-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces lavendulae IMRU 3455 contains two large linear plasmids designated pSLV45 (45 kb) and pSLV195 (195 kb). A cosmid, pSPRX604, containing 42 kb from pSLV45 was cloned and sequenced. pSLV45 was tagged with a hygromycin-resistance marker by homologous recombination to generate the derivatives pSLV45.680 and pSLV45.681. An apramycin-resistance marker was introduced into S. lavendulae IMRU 467 using the pSPR910 integration vector to yield the recipient strain SPW910. The self-transmissible nature of pSLV45 was determined by transfer of pSLV45.680 and pSLV45.681 from the donor strains SPW680 and SPW681 into the recipient strain SPW910. Southern analysis indicated the presence of hygromycin- and pSLV45-hybridizing sequences within SPW910 exconjugants. PFGE analysis confirmed pSLV45.680 and pSLV45.681 were transferred intact and formed freely replicating linear plasmids. Sequence analysis of pSPRX604 revealed genes predicted to be involved in plasmid transfer, partitioning and regulation. The transfer of the linear plasmid pSLV45 from S. lavendulae IMRU 3455 into S. lavendulae IMRU 467 may allow the development of pSLV45 as an actinomycete-to-actinomycete conjugative shuttle vector.
Collapse
Affiliation(s)
- Thomas J Hosted
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| | - Tim Wang
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| | - Ann C Horan
- New Lead Discovery, Schering Plough Research Institute, 2015 Galloping Hill Road, K15-C321-MS3600, Kenilworth, NJ 07033, USA
| |
Collapse
|
11
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
12
|
Vanden Boom TJ. Recent developments in the molecular genetics of the erythromycin-producing organism Saccharopolyspora erythraea. ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:79-111. [PMID: 12876795 DOI: 10.1016/s0065-2164(00)47002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 2002; 18:522-9. [PMID: 12350342 DOI: 10.1016/s0168-9525(02)02752-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosomal instability has been a hallmark of Streptomyces genetics. Deletions and circularization often occur in the less-conserved terminal sequences of the linear chromosomes, which contain swarms of transposable elements and other horizontally transferred elements. Intermolecular recombination involving these regions also generates gross exchanges, resulting in terminal inverted repeats of heterogeneous size and context. The structural instability is evidently related to evolution of the Streptomyces chromosomes, which is postulated to involve linearization of hypothetical circular progenitors via integration of a linear plasmid. This scenario is supported by several bioinformatic analyses.
Collapse
Affiliation(s)
- Carton W Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Pang X, Zhou X, Sun Y, Deng Z. Physical map of the linear chromosome of Streptomyces hygroscopicus 10-22 deduced by analysis of overlapping large chromosomal deletions. J Bacteriol 2002; 184:1958-65. [PMID: 11889104 PMCID: PMC134931 DOI: 10.1128/jb.184.7.1958-1965.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomal DNA of Streptomyces hygroscopicus 10-22, a derivative of strain 5102-6, was digested with several restriction endonucleases and analyzed by pulsed-field gel electrophoresis (PFGE). Digestions with AseI gave 11 fragments with a total length of ca. 7.36 Mb. The AseI sites were mapped by analysis of overlapping chromosomal deletions in different mutants and confirmed by Southern hybridizations using partially digested genome fragments and linking cosmids as probes. PFGE analysis of DNA with and without proteinase K treatment, together with the hybridization results, suggested a linear organization with terminal proteins and large terminal inverted repeats. Some deletion mutants had circular chromosomes.
Collapse
Affiliation(s)
- Xiuhua Pang
- Bio-X Life Science Research Center, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | |
Collapse
|
15
|
Yang MC, Losick R. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J Bacteriol 2001; 183:5180-6. [PMID: 11489872 PMCID: PMC95395 DOI: 10.1128/jb.183.17.5180-5186.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
The chromosome of the filamentous bacterium Streptomyces coelicolor is linear, but the genetic map is circular. We present cytological evidence based on the use of fluorescence in situ hybridization showing that the ends of the chromosome frequently colocalize, in agreement with the idea that the ends are held together, effectively forming a circular chromosome. These observations provide a possible explanation for how a linear bacterial chromosome can exhibit a circular genetic map.
Collapse
Affiliation(s)
- M C Yang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
16
|
Bamas-Jacques N, Lorenzon S, Lacroix P, Crouzet J. Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J Appl Microbiol 1999; 87:939-948. [PMID: 10692076 DOI: 10.1046/j.1365-2672.1999.00955.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces pristinaespiralis synthesizes pristinamycin, a member of the streptogramin antibiotic family which consists of a mixture of two types of chemically unrelated compounds named pristinamycins I and pristinamycins II. In order to estimate the size of the Strep. pristinaespiralis chromosome and to elucidate the organization of the pristinamycin biosynthetic and resistance genes already identified, it was decided to use the pulsed-field gel electrophoresis technique. Results indicate that the Strep. pristinaespiralis chromosome is linear and about 7580 kb, as previously shown for several other Streptomyces species. By hybridization, it could be shown that the biosynthetic and resistance genes for pristinamycins I and pristinamycins II, except for the multidrug resistance gene ptr, are interspersed and seem to be organized as a single large cluster, covering less than 200 kb corresponding to 2.6% of the total size of the chromosome. The consequences and significance of such a genetic organization are discussed.
Collapse
Affiliation(s)
- N Bamas-Jacques
- Service Génomique-Antibactériens, Service Procédés Biochimiques and Division Gencell, Centre de Recherche de Vitry-Alforville, Rhône-Poulenc Rorer S.A., Vitry-sur-Seine cedex, France
| | | | | | | |
Collapse
|
17
|
Reeves AR, English RS, Lampel JS, Post DA, Vanden Boom TJ. Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea. J Bacteriol 1999; 181:7098-106. [PMID: 10559177 PMCID: PMC94186 DOI: 10.1128/jb.181.22.7098-7106.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional organization of the erythromycin biosynthetic gene (ery) cluster of Saccharopolyspora erythraea has been examined by a variety of methods, including S1 nuclease protection assays, Northern blotting, Western blotting, and bioconversion analysis of erythromycin intermediates. The analysis was facilitated by the construction of novel mutants containing a S. erythraea transcriptional terminator within the eryAI, eryAIII, eryBIII, eryBIV, eryBV, eryBVI, eryCIV, and eryCVI genes and additionally by an eryAI -10 promoter mutant. All mutant strains demonstrated polar effects on the transcription of downstream ery biosynthetic genes. Our results demonstrate that the ery gene cluster contains four major polycistronic transcriptional units, the largest one extending approximately 35 kb from eryAI to eryG. Two overlapping polycistronic transcripts extending from eryBIV to eryBVII were identified. In addition, seven ery cluster promoter transcription start sites, one each beginning at eryAI, eryBI, eryBIII, eryBVI, and eryK and two beginning at eryBIV, were determined.
Collapse
Affiliation(s)
- A R Reeves
- Fermentation Microbiology Research and Development, Abbott Laboratories, North Chicago, Illinois 60064-4000, USA
| | | | | | | | | |
Collapse
|