1
|
Salazar OR, N. Arun P, Cui G, Bay LK, van Oppen MJH, Webster NS, Aranda M. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. SCIENCE ADVANCES 2022; 8:eabq0304. [PMID: 36149959 PMCID: PMC9506716 DOI: 10.1126/sciadv.abq0304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The metabolic capabilities of animals have been derived from well-studied model organisms and are generally considered to be well understood. In animals, cysteine is an important amino acid thought to be exclusively synthesized through the transsulfuration pathway. Corals of the genus Acropora have lost cystathionine β-synthase, a key enzyme of the transsulfuration pathway, and it was proposed that Acropora relies on the symbiosis with dinoflagellates of the family Symbiodiniaceae for the acquisition of cysteine. Here, we identify the existence of an alternative pathway for cysteine biosynthesis in animals through the analysis of the genome of the coral Acropora loripes. We demonstrate that these coral proteins are functional and synthesize cysteine in vivo, exhibiting previously unrecognized metabolic capabilities of animals. This pathway is also present in most animals but absent in mammals, arthropods, and nematodes, precisely the groups where most of the animal model organisms belong to, highlighting the risks of generalizing findings from model organisms.
Collapse
Affiliation(s)
- Octavio R. Salazar
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Prasanna N. Arun
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Australia
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Key amino acid residues in homoserine-acetyltransferase from M. tuberculosis give insight into the evolution of MetX family of enzymes - HAT, SAT and HST. Biochimie 2021; 189:13-25. [PMID: 34090964 DOI: 10.1016/j.biochi.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
Multiple sequence alignment of homoserine-acetyltransferases, serine-acetyltransferases and homoserine-succinyltransferases show they all belong to MetX family, having evolved from a common ancestor by conserving the catalytic site and substrate binding residues. The discrimination in the substrate selection arises due to the presence of substrate-specific residues lining the substrate-binding pocket. Mutation of Ala59 and Gly62 to Gly and Pro respectively in homoserine-acetyltransferase from M. tuberculosis resulted in a serine-acetyltransferase like enzyme as it acetylated both l-homoserine and l-serine. Homoserine-acetyltransferase from M. tuberculosis when mutated at positon 322 where Leu was converted to Arg, resulted in succinylation over acetylation of l-homoserine. Our studies establish the importance of the substrate binding residues in determining the type of activity possessed by MetX family, despite all of them having the same catalytic triad Ser-Asp-His. Hence key residues at the substrate binding pocket dictate whether the given enzyme shows predominant transferase or hydrolase activity.
Collapse
|
3
|
Wang J, Zeng W, Xie J, Fu Y, Jiang D, Lin Y, Chen W, Cheng J. A novel antisense long non-coding RNA participates in asexual and sexual reproduction by regulating the expression of GzmetE in Fusarium graminearum. Environ Microbiol 2021; 23:4939-4955. [PMID: 33438341 DOI: 10.1111/1462-2920.15399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/09/2021] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is an important worldwide pathogen that causes Fusarium head blight in wheat, barley, maize and other grains. LncRNAs play important roles in many biological processes, but little is known about their functions and mechanisms in filamentous fungi. Here, we report that a natural antisense RNA, GzmetE-AS, is transcribed from the opposite strand of GzmetE. GzmetE encodes a homoserine O-acetyltransferase, which is important for sexual development and plant infection. The expression of GzmetE-AS was increased significantly during the conidiation stage, while GzmetE was upregulated in the late stage of sexual reproduction. Overexpression of GzmetE-AS inhibited the transcription of GzmetE. In contrast, the expression of GzmetE was significantly increased in GzmetE-AS transcription termination strain GzmetE-AS-T. Furthermore, GzmetE-AS-T produced more perithecia and facilitated the ascospore discharge, resembling the phenotype of GzmetE overexpressing strains. However, overexpression of GzmetE-AS in ∆dcl1/2 strain cannot inhibit the expression of GzmetE, and the GzmetE nat-siRNA is also significantly reduced in ∆dcl1/2 mutant. Taken together, we have identified a novel antisense lncRNA GzmetE-AS, which is involved in asexual and sexual reproduction by regulating its antisense gene GzmetE through RNAi pathway. Our findings reveal that the lncRNA plays critical roles in the development of F. graminearum.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Yeon JY, Yoo SJ, Takagi H, Kang HA. A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Sci Rep 2018; 8:2377. [PMID: 29402922 PMCID: PMC5799214 DOI: 10.1038/s41598-018-20630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/03/2022] Open
Abstract
In most bacteria and plants, direct biosynthesis of cysteine from sulfide via O-acetylserine (OAS) is essential to produce sulfur amino acids from inorganic sulfur. Here, we report the functional analysis of a novel mitochondrial serine O-acetyltransferase (SAT), responsible for converting serine into OAS, in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Domain analysis of O. parapolymorpha SAT (OpSat1p) and other fungal SATs revealed that these proteins possess a mitochondrial targeting sequence (MTS) at the N-terminus and an α/β hydrolase 1 domain at the C-terminal region, which is quite different from the classical SATs of bacteria and plants. Noticeably, OpSat1p is functionally interchangeable with Escherichia coli SAT, CysE, despite that it displays much less enzymatic activity, with marginal feedback inhibition by cysteine, compared to CysE. The Opsat1Δ-null mutant showed remarkably reduced intracellular levels of cysteine and glutathione, implying OAS generation defect. The MTS of OpSat1p directs the mitochondrial targeting of a reporter protein, thus, supporting the localization of OpSat1p in the mitochondria. Intriguingly, the OpSat1p variant lacking MTS restores the OAS auxotrophy, but not the cysteine auxotrophy of the Opsat1Δ mutant strain. This is the first study on a mitochondrial SAT with critical function in sulfur assimilatory metabolism in fungal species.
Collapse
Affiliation(s)
- Ji Yoon Yeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
5
|
Bastard K, Perret A, Mariage A, Bessonnet T, Pinet-Turpault A, Petit JL, Darii E, Bazire P, Vergne-Vaxelaire C, Brewee C, Debard A, Pellouin V, Besnard-Gonnet M, Artiguenave F, Médigue C, Vallenet D, Danchin A, Zaparucha A, Weissenbach J, Salanoubat M, de Berardinis V. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 2017; 13:858-866. [PMID: 28581482 DOI: 10.1038/nchembio.2397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
Collapse
Affiliation(s)
- Karine Bastard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Alain Perret
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Aline Mariage
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Thomas Bessonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Agnès Pinet-Turpault
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Pascal Bazire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Clémence Brewee
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Adrien Debard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marielle Besnard-Gonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | | | - Claudine Médigue
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - David Vallenet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne Zaparucha
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| |
Collapse
|
6
|
de Castro MV, Ióca LP, Williams DE, Costa BZ, Mizuno CM, Santos MFC, de Jesus K, Ferreira ÉLF, Seleghim MHR, Sette LD, Pereira Filho ER, Ferreira AG, Gonçalves NS, Santos RA, Patrick BO, Andersen RJ, Berlinck RGS. Condensation of Macrocyclic Polyketides Produced by Penicillium sp. DRF2 with Mercaptopyruvate Represents a New Fungal Detoxification Pathway. JOURNAL OF NATURAL PRODUCTS 2016; 79:1668-1678. [PMID: 27227682 DOI: 10.1021/acs.jnatprod.6b00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Application of a refined procedure of experimental design and chemometric analysis to improve the production of curvularin-related polyketides by a marine-derived Penicillium sp. DRF2 resulted in the isolation and identification of cyclothiocurvularins 6-8 and cyclosulfoxicurvularins 10 and 11, novel curvularins condensed with a mercaptolactate residue. Two additional new curvularins, 3 and 4, are also reported. The structures of the sulfur-bearing curvularins were unambiguously established by analysis of spectroscopic data and by X-ray diffraction analysis. Analysis of stable isotope feeding experiments with [U-(13)C3(15)N]-l-cysteine confirmed the presence of the 2-hydroxy-3-mercaptopropanoic acid residue in 6-8 and the oxidized sulfoxide in 10 and 11. Cyclothiocurvularins A (6) and B (7) are formed by spontaneous reaction between 10,11-dehydrocurvularin (2) and mercaptopyruvate (12) obtained by transamination of cysteine. High ratios of [U-(13)C3(15)N]-l-cysteine incorporation into cyclothiocurvularin B (7), the isolation of two diastereomers of cyclothiocurvularins, the lack of cytotoxicity of cyclothiocurvularin B (7) and its methyl ester (8), and the spontaneous formation of cyclothiocurvularins from 10,11-dehydrocurvularin and mercaptopyruvate provide evidence that the formation of cyclothiocurvularins may well correspond to a 10,11-dehydrocurvularin detoxification process by Penicillium sp. DRF2.
Collapse
Affiliation(s)
- Marcos V de Castro
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Bruna Z Costa
- Instituto de Quimica, Universidade Estadual de Campinas , Caixa Postal 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Carolina M Mizuno
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Karen de Jesus
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Éverton L F Ferreira
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A, 1515, Rio Claro, SP, Brazil
| | - Edenir R Pereira Filho
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Natália S Gonçalves
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Raquel A Santos
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
8
|
Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:941-57. [PMID: 26150413 DOI: 10.1128/ec.00055-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.
Collapse
|
9
|
Sohn MJ, Yoo SJ, Oh DB, Kwon O, Lee SY, Sibirny AA, Kang HA. Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 2014; 9:e100725. [PMID: 24959887 PMCID: PMC4069077 DOI: 10.1371/journal.pone.0100725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast Hansenula polymorpha, which has attracted much attention as an industrial yeast strain for various biotechnological applications. Quite interestingly, the detailed sulfur metabolic pathway of H. polymorpha, which was reconstructed based on combined analyses of the genome sequences and validation by systematic gene deletion experiments, revealed the absence of de novo synthesis of homocysteine from inorganic sulfur in this yeast. Thus, the direct biosynthesis of cysteine from sulfide is the only pathway of synthesizing sulfur amino acids from inorganic sulfur in H. polymorpha, despite the presence of both directions of transsulfuration pathway Moreover, only cysteine, but no other sulfur amino acid, was able to repress the expression of a subset of sulfur genes, suggesting its central and exclusive role in the control of H. polymorpha sulfur metabolism. 35S-Cys was more efficiently incorporated into intracellular sulfur compounds such as glutathione than 35S-Met in H. polymorpha, further supporting the cysteine-centered sulfur pathway. This is the first report on the novel features of H. polymorpha sulfur metabolic pathway, which are noticeably distinct from those of other yeast and filamentous fungal species.
Collapse
Affiliation(s)
- Min Jeong Sohn
- Department of Life Science, Chung-Ang University, Seoul, Korea
- Department of Chemical & Biomolecular Engineering (BK21+ program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Doo-Byoung Oh
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Ohsuk Kwon
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang Yup Lee
- Department of Chemical & Biomolecular Engineering (BK21+ program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Andriy A. Sibirny
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Fu J, Zhang X, Chen X, Yin Y, Ma Z. Serine O-acetyltransferase is important, but not essential for cysteine-methionine synthesis in Fusarium graminearum. World J Microbiol Biotechnol 2013; 30:1219-28. [PMID: 24197784 DOI: 10.1007/s11274-013-1544-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
O-acetyltransferase (SAT) is a key enzyme converting serine into O-acetylserine in the synthesis of sulphur-containing amino acids. To characterize the function of FgSAT in Fusarium graminearum, three deletion mutants of FgSAT (ΔFgSAT-1, -2 and -18) were obtained using a gene replacement strategy. The three mutants did not show recognizable phenotypic changes on potato dextrose agar medium, but exhibited a very weak growth on fructose gelatin agar (FGA) medium containing SO₄²⁻ as sole sulfur source. Supplementation of O-acetylserine, cysteine, or methionine, but not serine, rescued the defect of mycelial growth in FgSAT deletion mutants, indicating that FgSAT is involved in conversion of serine into O-acetylserine. The three mutants had a decrease in conidiation in mung bean liquid, but not in carboxymethyl cellulose. Virulence, deoxynivalenol production and fungicide sensitivity assays found that the three mutants showed no significant difference from wild-type progenitor PH-1. Real-time PCR assays detected an increase in expression levels of FgOAHS, FgCBS and FgCGL genes involved in the alternative pathway in FgSAT deletion mutants, suggesting that the alternative pathway in F. graminearum is present and can operate. Addition of homoserine, the upstream substrate of the alternative pathway, also restored the normal mycelial growth of FgSAT deletion mutants on FGA, indicating that the alternative pathway in F. graminearum might be positively regulated by homoserine.
Collapse
Affiliation(s)
- Jing Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China,
| | | | | | | | | |
Collapse
|
11
|
Crystallographic study to determine the substrate specificity of an L-serine-acetylating enzyme found in the D-cycloserine biosynthetic pathway. J Bacteriol 2013; 195:1741-9. [PMID: 23396912 DOI: 10.1128/jb.02085-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DcsE, one of the enzymes found in the d-cycloserine biosynthetic pathway, displays a high sequence homology to l-homoserine O-acetyltransferase (HAT), but it prefers l-serine over l-homoserine as the substrate. To clarify the substrate specificity, in the present study we determined the crystal structure of DcsE at a 1.81-Å resolution, showing that the overall structure of DcsE is similar to that of HAT, whereas a turn region to form an oxyanion hole is obviously different between DcsE and HAT: in detail, the first and last residues in the turn of DcsE are Gly(52) and Pro(55), respectively, but those of HAT are Ala and Gly, respectively. In addition, more water molecules were laid on one side of the turn region of DcsE than on that of HAT, and a robust hydrogen-bonding network was formed only in DcsE. We created a HAT-like mutant of DcsE in which Gly(52) and Pro(55) were replaced by Ala and Gly, respectively, showing that the mutant acetylates l-homoserine but scarcely acetylates l-serine. The crystal structure of the mutant DcsE shows that the active site, including the turn and its surrounding waters, is similar to that of HAT. These findings suggest that a methyl group of the first residue in the turn of HAT plays a role in excluding the binding of l-serine to the substrate-binding pocket. In contrast, the side chain of the last residue in the turn of DcsE may need to form an extensive hydrogen-bonding network on the turn, which interferes with the binding of l-homoserine.
Collapse
|
12
|
Hébert A, Casaregola S, Beckerich JM. Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 2011; 11:366-78. [PMID: 21348937 DOI: 10.1111/j.1567-1364.2011.00725.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The evolution of the metabolism of sulfur compounds among yeast species was investigated. Differences between species were observed in the cysteine biosynthesis pathway. Most yeast species possess two pathways leading to cysteine production, the transsulfuration pathway and the O-acetyl-serine (OAS) pathway, with the exception of Saccharomyces cerevisiae and Candida glabrata, which only display the transsulfuration pathway, and Schizosaccharomyces pombe, which only have the OAS pathway. An examination of the components of the regulatory network in the different species shows that it is conserved in all the species analyzed, as its central component Met4p was shown to keep its functional domains and its partners were present. The analysis of the presence of genes involved in the catabolic pathway shows that it is evolutionarily conserved in the sulfur metabolism and leads us to propose a role for two gene families which appeared to be highly conserved. This survey has provided ways to understand the diversity of sulfur metabolism products among yeast species through the reconstruction of these pathways. This diversity could account for the difference in metabolic potentialities of the species with a biotechnological interest.
Collapse
Affiliation(s)
- Agnès Hébert
- INRA, UMR1319, Institut MICALIS, AgroParisTech, Thiverval-Grignon, France
| | | | | |
Collapse
|
13
|
Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae. Antimicrob Agents Chemother 2010; 54:1132-9. [PMID: 20086163 DOI: 10.1128/aac.01226-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein.
Collapse
|
14
|
Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. EUKARYOTIC CELL 2005; 4:1562-73. [PMID: 16151249 PMCID: PMC1214198 DOI: 10.1128/ec.4.9.1562-1573.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability to adhere to surfaces and develop as a multicellular community is an adaptation used by most microorganisms to survive in changing environments. Biofilm formation proceeds through distinct developmental phases and impacts not only medicine but also industry and evolution. In organisms such as the opportunistic pathogen Candida albicans, the ability to grow as biofilms is also an important mechanism for persistence, facilitating its growth on different tissues and a broad range of abiotic surfaces used in medical devices. The early stage of C. albicans biofilm is characterized by the adhesion of single cells to the substratum, followed by the formation of an intricate network of hyphae and the beginning of a dense structure. Changes in the transcriptome begin within 30 min of contact with the substrate and include expression of genes related to sulfur metabolism, in particular MET3, and the equivalent gene homologues of the Ribi regulon in Saccharomyces cerevisiae. Some of these changes are initiated early and maintained throughout the process; others are restricted to the earliest stages of biofilm formation. We identify here a potential alternative pathway for cysteine metabolism and the biofilm-associated expression of genes involved in glutathione production in C. albicans.
Collapse
Affiliation(s)
- Luis A Murillo
- Department of Cell and Tissue Biology, University of California, San Francisco, 521 Parnassus Ave., San Francisco, CA 94143-0422, USA
| | | | | | | | | | | |
Collapse
|
15
|
Takagi H, Yoshioka K, Awano N, Nakamori S, Ono BI. Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 2003; 218:291-7. [PMID: 12586406 DOI: 10.1111/j.1574-6968.2003.tb11531.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Some strains of Saccharomyces cerevisiae have detectable activities of L-serine O-acetyltransferase (SATase) and O-acetyl-L-serine/O-acetyl-L-homoserine sulfhydrylase (OAS/OAH-SHLase), but synthesize L-cysteine exclusively via cystathionine by cystathionine beta-synthase and cystathionine gamma-lyase. To untangle this peculiar feature in sulfur metabolism, we introduced Escherichia coli genes encoding SATase and OAS-SHLase into S. cerevisiae L-cysteine auxotrophs. While the cells expressing SATase grew on medium lacking L-cysteine, those expressing OAS-SHLase did not grow at all. The cells expressing both enzymes grew very well without L-cysteine. These results indicate that S. cerevisiae SATase cannot support L-cysteine biosynthesis and that S. cerevisiae OAS/OAH-SHLase produces L-cysteine if enough OAS is provided by E. coli SATase. It appears as if S. cerevisiae SATase does not possess a metabolic role in vivo either because of very low activity or localization. For example, S. cerevisiae SATase may be localized in the nucleus, thus controlling the level of OAS required for regulation of sulfate assimilation, but playing no role in the direct synthesis of L-cysteine.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka-cho, 910-1195, Fukui, Japan.
| | | | | | | | | |
Collapse
|
16
|
Brzywczy J, Sieńko M, Kucharska A, Paszewski A. Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi. Yeast 2002; 19:29-35. [PMID: 11754480 DOI: 10.1002/yea.798] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Schizosaccharomyces pombe, in contrast to Saccharomyces cerevisiae and Aspergillus nidulans, lacks cystathionine beta-synthase and cystathionine gamma-lyase, two enzymes in the pathway from methionine to cysteine. As a consequence, methionine cannot serve as an efficient sulphur source for the fungus and does not bring about repression of sulphur assimilation, which is under control of the cysteine-mediated sulphur metabolite repression system. This system operates at the transcriptional level, as was shown for the homocysteine synthase encoding gene. Our results corroborate the growing evidence that cysteine is the major low-molecular-weight effector in the regulation of sulphur metabolism in bacteria, fungi and plants.
Collapse
Affiliation(s)
- Jerzy Brzywczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | | | | |
Collapse
|
17
|
Grynberg M, Piotrowska M, Pizzinini E, Turner G, Paszewski A. The Aspergillus nidulans metE gene is regulated by a second system independent from sulphur metabolite repression. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:78-84. [PMID: 11406274 DOI: 10.1016/s0167-4781(01)00224-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the Aspergillus nidulans metE gene lead to requirement for O-acetylhomoserine. The gene was cloned by complementation of the metE31 mutation. The coding sequence was found to be interrupted by two introns of 66 and 50 bp, respectively. metE codes for a peptide of 489 amino acids which belongs to the family of homoserine O-acetyltransferases and a well-defined superfamily of alpha/beta hydrolases. Transcription of the metE gene is strongly up-regulated by a severe limitation of methionine, but not of cysteine. This gene is the first sulphur metabolism gene described in A. nidulans which is not regulated by the sulphur metabolite repression system in which cysteine acts as the low-molecular-weight effector.
Collapse
Affiliation(s)
- M Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|