1
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Rodoni B, Constable FE. Iodixanol density gradients as an effective phytoplasma enrichment approach to improve genome sequencing. Front Microbiol 2022; 13:937648. [PMID: 36033837 PMCID: PMC9411968 DOI: 10.3389/fmicb.2022.937648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Obtaining complete phytoplasma genomes is difficult due to the lack of a culture system for these bacteria. To improve genome assembly, a non-ionic, low- and iso-osmotic iodixanol (Optiprep™) density gradient centrifugation method was developed to enrich for phytoplasma cells and deplete plant host tissues prior to deoxyribonucleic acid (DNA) extraction and high-throughput sequencing (HTS). After density gradient enrichment, potato infected with a ‘Candidatus Phytoplasma australasia’-related strain showed a ∼14-fold increase in phytoplasma HTS reads, with a ∼1.7-fold decrease in host genomic reads compared to the DNA extracted from the same sample without density gradient centrifugation enrichment. Additionally, phytoplasma genome assemblies from libraries equalized to 5 million reads were, on average, ∼15,000 bp larger and more contiguous (N50 ∼14,800 bp larger) than assemblies from the DNA extracted from the infected potato without enrichment. The method was repeated on capsicum infected with Sweet Potato Little Leaf phytoplasma (‘Ca. Phytoplasma australasia’-related strain) with a lower phytoplasma titer than the potato. In capsicum, ∼threefold more phytoplasma reads and ∼twofold less host genomic reads were obtained, with the genome assembly size and N50 values from libraries equalized to 3.4 million reads ∼137,000 and ∼4,000 bp larger, respectively, compared to the DNA extracted from infected capsicum without enrichment. Phytoplasmas from potato and capsicum were both enriched at a density of 1.049–1.058 g/ml. Finally, we present two highly contiguous ‘Ca. Phytoplasma australasia’ phytoplasma reference genomes sequenced from naturally infected Solanaceae hosts in Australia. Obtaining high-quality phytoplasma genomes from naturally infected hosts will improve insights into phytoplasma taxonomy, which will improve their detection and disease management.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
- *Correspondence: Bianca Rodrigues Jardim,
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, QLD, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Transcriptome and Small RNA Sequencing Analysis Revealed Roles of PaWB-Related miRNAs and Genes in Paulownia fortunei. FORESTS 2018. [DOI: 10.3390/f9070397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH. Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 2013; 8:e62770. [PMID: 23626855 PMCID: PMC3633829 DOI: 10.1371/journal.pone.0062770] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches'-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution.
Collapse
Affiliation(s)
- Wan-Chia Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Ling Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chan-Pin Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Marcone C. Pulsed-field gel electrophoresis for isolation of full-length phytoplasma chromosomes from plants. Methods Mol Biol 2013; 938:395-403. [PMID: 22987433 DOI: 10.1007/978-1-62703-089-2_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pulsed-field gel electrophoresis (PFGE) is a powerful technique for genomic studies of unculturable plant-pathogenic phytoplasmas, which enables separation of full-length phytoplasma chromosomes from contaminating host plant nucleic acids. The PFGE method described here involves isolation of phytoplasmal DNA from high-titer phytoplasma-infected herbaceous plants using a phytoplasma enrichment procedure, embedding of phytoplasma chromosomes in agarose blocks, and separation of entire phytoplasma chromosomes from contaminating host plant nucleic acids by electrophoresis. Full-length phytoplasma chromosomes are resolved as single, discrete bands in the gel. The identity of these bands can be confirmed by Southern blot hybridization using a ribosomal DNA fragment as a probe. The method does not utilize gamma-irradiation to linearize phytoplasma chromosomes prior to electrophoresis.
Collapse
Affiliation(s)
- Carmine Marcone
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy.
| |
Collapse
|
5
|
Lo WS, Chen LL, Chung WC, Gasparich GE, Kuo CH. Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics 2013; 14:22. [PMID: 23324436 PMCID: PMC3563533 DOI: 10.1186/1471-2164-14-22] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/20/2012] [Indexed: 11/17/2022] Open
Abstract
Background The genus Spiroplasma contains a group of helical, motile, and wall-less bacteria in the class Mollicutes. Similar to other members of this class, such as the animal-pathogenic Mycoplasma and the plant-pathogenic ‘Candidatus Phytoplasma’, all characterized Spiroplasma species were found to be associated with eukaryotic hosts. While most of the Spiroplasma species appeared to be harmless commensals of insects, a small number of species have evolved pathogenicity toward various arthropods and plants. In this study, we isolated a novel strain of honeybee-associated S. melliferum and investigated its genetic composition and evolutionary history by whole-genome shotgun sequencing and comparative analysis with other Mollicutes genomes. Results The whole-genome shotgun sequencing of S. melliferum IPMB4A produced a draft assembly that was ~1.1 Mb in size and covered ~80% of the chromosome. Similar to other Spiroplasma genomes that have been studied to date, we found that this genome contains abundant repetitive sequences that originated from plectrovirus insertions. These phage fragments represented a major obstacle in obtaining a complete genome sequence of Spiroplasma with the current sequencing technology. Comparative analysis of S. melliferum IPMB4A with other Spiroplasma genomes revealed that these phages may have facilitated extensive genome rearrangements in these bacteria and contributed to horizontal gene transfers that led to species-specific adaptation to different eukaryotic hosts. In addition, comparison of gene content with other Mollicutes suggested that the common ancestor of the SEM (Spiroplasma, Entomoplasma, and Mycoplasma) clade may have had a relatively large genome and flexible metabolic capacity; the extremely reduced genomes of present day Mycoplasma and ‘Candidatus Phytoplasma’ species are likely to be the result of independent gene losses in these lineages. Conclusions The findings in this study highlighted the significance of phage insertions and horizontal gene transfer in the evolution of bacterial genomes and acquisition of pathogenicity. Furthermore, the inclusion of Spiroplasma in comparative analysis has improved our understanding of genome evolution in Mollicutes. Future improvements in the taxon sampling of available genome sequences in this group are required to provide further insights into the evolution of these important pathogens of humans, animals, and plants.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Mapping the phytoplasma chromosome. Methods Mol Biol 2012. [PMID: 22987434 DOI: 10.1007/978-1-62703-089-2_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Physical and genetic mapping of the phytoplasma chromosome can be a useful tool in a genome sequencing project in order to assemble the in silico-predicted contigs robustly. Mapping consists of four distinct steps: preparation of phytoplasma chromosomes from infected plants, single- and double-digestion of chromosomes with rare-cutting restriction enzymes, separation of large DNA fragments by pulsed-field gel electrophoresis, and hybridization with various genetic markers. Materials and methods needed for each step are described and the technique is illustrated using the flavescence dorée phytoplasma genome map as an example.
Collapse
|
7
|
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2011; 2012:185942. [PMID: 22550465 PMCID: PMC3322544 DOI: 10.1100/2012/185942] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/20/2011] [Indexed: 11/21/2022] Open
Abstract
Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma' genomes that include those of ‘Ca. P. asteris' strains OY-M and AY-WB, ‘Ca. P. australiense,' and ‘Ca. P. mali'. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali' is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.
Collapse
Affiliation(s)
- Michael Kube
- Department of Crop and Animal Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
8
|
Wulff NA, Eveillard S, Foissac X, Ayres AJ, Bové JM. rRNA operons and genome size of 'Candidatus Liberibacter americanus', a bacterium associated with citrus huanglongbing in Brazil. Int J Syst Evol Microbiol 2009; 59:1984-91. [PMID: 19567586 DOI: 10.1099/ijs.0.008508-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing is one of the most severe diseases of citrus worldwide and is associated with 'Candidatus (Ca.) Liberibacter africanus' in Africa, 'Ca. Liberibacter asiaticus' in Asia and the Americas (Brazil, USA and Cuba) and 'Ca. Liberibacter americanus' (Lam) in Brazil. In the absence of axenic cultures, genetic information on liberibacters is scarce. The sequences of the entire 23S rRNA and 5S rRNA genes from Lam have now been obtained, using a consensus primer designed on known tRNAMet sequences of rhizobia. The size of the Lam genome was determined by PFGE, using Lam-infected periwinkle plants for bacterial enrichment, and was found to be close to 1.31 Mbp. In order to determine the number of ribosomal operons on the Lam genome, probes designed to detect the 16S rRNA gene and the 3' end of the 23S rRNA gene were developed and used for Southern hybridization with I-CeuI-treated genomic DNA. Our results suggest that there are three ribosomal operons in a circular genome. Lam is the first liberibacter species for which such data are available.
Collapse
Affiliation(s)
- N A Wulff
- Fundecitrus-Fundo de Defesa da Citricultura, Araraquara, SP, CEP 14807-040, Brazil
| | | | | | | | | |
Collapse
|
9
|
Wei W, Lee IM, Davis RE, Suo X, Zhao Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 2008; 58:2368-77. [DOI: 10.1099/ijs.0.65868-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Malembic-Maher S, Constable F, Cimerman A, Arnaud G, Carle P, Foissac X, Boudon-Padieu E. A chromosome map of the Flavescence doree phytoplasma. MICROBIOLOGY-SGM 2008; 154:1454-1463. [PMID: 18451054 DOI: 10.1099/mic.0.2007/013888-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Flavescence dorée phytoplasma (FD-P), a non-cultivable, plant-pathogenic bacterium of the class Mollicutes, is the causal agent of a quarantine disease affecting vineyards of southern Europe, mainly in southern France and northern Italy. To investigate FD-P diversity and phytoplasma genetic determinants governing the FD-P life cycle, a genome project has been initiated. A physical map of the chromosome of FD-P strain FD92, purified from infected broad beans, was constructed by performing restriction digests of the chromosome and resolving the fragments by PFGE. Single and double digestions of the chromosome with the enzymes SalI, BssHII, MluI and EagI were performed and used to map 13 restriction sites on the FD-P chromosome. The size of the chromosome was calculated to be 671 kbp. Southern blot analyses using cloned phytoplasma probes were carried out to assist in the arrangement of contiguous restriction fragments and to map eight genetic loci, including the two rRNA operons, the tuf, uvrB-degV and secY-map (FD9) genes, the FD2 marker and two orphan sequences (FDDH29 and FDSH05) isolated through subtractive suppression hybridization.
Collapse
Affiliation(s)
- Sylvie Malembic-Maher
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Fiona Constable
- INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France
| | - Agnès Cimerman
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Guillaume Arnaud
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Patricia Carle
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Xavier Foissac
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Elisabeth Boudon-Padieu
- CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France
| |
Collapse
|
11
|
Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E. The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 2008; 9:306. [PMID: 18582369 PMCID: PMC2459194 DOI: 10.1186/1471-2164-9-306] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022] Open
Abstract
Background Phytoplasmas are insect-transmitted, uncultivable bacterial plant pathogens that cause diseases in hundreds of economically important plants. They represent a monophyletic group within the class Mollicutes (trivial name mycoplasmas) and are characterized by a small genome with a low GC content, and the lack of a firm cell wall. All mycoplasmas, including strains of 'Candidatus (Ca.) Phytoplasma asteris' and 'Ca. P. australiense', examined so far have circular chromosomes, as is the case for almost all walled bacteria. Results Our work has shown that 'Ca. Phytoplasma mali', the causative agent of apple proliferation disease, has a linear chromosome. Linear chromosomes were also identified in the closely related provisional species 'Ca. P. pyri' and 'Ca. P. prunorum'. The chromosome of 'Ca. P. mali' strain AT is 601,943 bp in size and has a GC content of 21.4%. The chromosome is further characterized by large terminal inverted repeats and covalently closed hairpin ends. Analysis of the protein-coding genes revealed that glycolysis, the major energy-yielding pathway supposed for 'Ca. P. asteris', is incomplete in 'Ca. P. mali'. Due to the apparent lack of other metabolic pathways present in mycoplasmas, it is proposed that maltose and malate are utilized as carbon and energy sources. However, complete ATP-yielding pathways were not identified. 'Ca. P. mali' also differs from 'Ca. P. asteris' by a smaller genome, a lower GC content, a lower number of paralogous genes, fewer insertions of potential mobile DNA elements, and a strongly reduced number of ABC transporters for amino acids. In contrast, 'Ca. P. mali' has an extended set of genes for homologous recombination, excision repair and SOS response than 'Ca. P. asteris'. Conclusion The small linear chromosome with large terminal inverted repeats and covalently closed hairpin ends, the extremely low GC content and the limited metabolic capabilities reflect unique features of 'Ca. P. mali', not only within phytoplasmas, but all mycoplasmas. It is expected that the genome information obtained here will contribute to a better understanding of the reduced metabolism of phytoplasmas, their fastidious nutrition requirements that prevented axenic cultivation, and the mechanisms involved in pathogenicity.
Collapse
Affiliation(s)
- Michael Kube
- Max Planck Institute for Molecular Genetics, Ihnestr, 63, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. J Bacteriol 2008; 190:3979-91. [PMID: 18359806 PMCID: PMC2395047 DOI: 10.1128/jb.01301-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 03/12/2008] [Indexed: 11/20/2022] Open
Abstract
The chromosome sequence of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of "Ca. Phytoplasma australiense" with "Ca. Phytoplasma asteris" strains OY-M and AY-WB showed that the gene order was more conserved between the closely related "Ca. Phytoplasma asteris" strains than to "Ca. Phytoplasma australiense." Differences observed between "Ca. Phytoplasma australiense" and "Ca. Phytoplasma asteris" strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function.
Collapse
Affiliation(s)
- L T T Tran-Nguyen
- Charles Darwin University, School of Environmental and Life Sciences, Darwin, NT, 0909, Australia.
| | | | | | | | | |
Collapse
|
13
|
Cai H, Wei W, Davis RE, Chen H, Zhao Y. Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. Int J Syst Evol Microbiol 2008; 58:1448-57. [DOI: 10.1099/ijs.0.65615-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Wei W, Davis RE, Lee IM, Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 2007; 57:1855-1867. [PMID: 17684271 DOI: 10.1099/ijs.0.65000-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that cause numerous plant diseases. As no phytoplasma has been cultured in cell-free medium, phytoplasmas cannot be differentiated and classified by the traditional methods which are applied to culturable prokaryotes. Over the past decade, the establishment of a phytoplasma classification scheme based on 16S rRNA restriction fragment length polymorphism (RFLP) patterns has enabled the accurate and reliable identification and classification of a wide range of phytoplasmas. In the present study, we expanded this classification scheme through the use of computer-simulated RFLP analysis, achieving rapid differentiation and classification of phytoplasmas. Over 800 publicly available phytoplasma 16S rRNA gene sequences were aligned using the CLUSTAL_X program and the aligned 1.25 kb fragments were exported to pDRAW32 software for in silico restriction digestion and virtual gel plotting. Based on distinctive virtual RFLP patterns and calculated similarity coefficients, phytoplasma strains were classified into 28 groups. The results included the classification of hundreds of previously unclassified phytoplasmas and the delineation of 10 new phytoplasma groups representing three recently described and seven novel putative 'Candidatus Phytoplasma' taxa.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
15
|
'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2005; 54:1243-1255. [PMID: 15280299 DOI: 10.1099/ijs.0.02854-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trivial name 'phytoplasma' has been adopted to collectively name wall-less, non-helical prokaryotes that colonize plant phloem and insects, which were formerly known as mycoplasma-like organisms. Although phytoplasmas have not yet been cultivated in vitro, phylogenetic analyses based on various conserved genes have shown that they represent a distinct, monophyletic clade within the class Mollicutes. It is proposed here to accommodate phytoplasmas within the novel genus 'Candidatus (Ca.) Phytoplasma'. Given the diversity within 'Ca. Phytoplasma', several subtaxa are needed to accommodate organisms that share <97.5% similarity among their 16S rRNA gene sequences. This report describes the properties of 'Ca. Phytoplasma', a taxon that includes the species 'Ca. Phytoplasma aurantifolia' (the prokaryote associated with witches'-broom disease of small-fruited acid lime), 'Ca. Phytoplasma australiense' (associated with Australian grapevine yellows), 'Ca. Phytoplasma fraxini' (associated with ash yellows), 'Ca. Phytoplasma japonicum' (associated with Japanese hydrangea phyllody), 'Ca. Phytoplasma brasiliense' (associated with hibiscus witches'-broom in Brazil), 'Ca. Phytoplasma castaneae' (associated with chestnut witches'-broom in Korea), 'Ca. Phytoplasma asteris' (associated with aster yellows), 'Ca. Phytoplasma mali' (associated with apple proliferation), 'Ca. Phytoplasma phoenicium' (associated with almond lethal disease), 'Ca. Phytoplasma trifolii' (associated with clover proliferation), 'Ca. Phytoplasma cynodontis' (associated with Bermuda grass white leaf), 'Ca. Phytoplasma ziziphi' (associated with jujube witches'-broom), 'Ca. Phytoplasma oryzae' (associated with rice yellow dwarf) and six species-level taxa for which the Candidatus species designation has not yet been formally proposed (for the phytoplasmas associated with X-disease of peach, grapevine flavescence dorée, Central American coconut lethal yellows, Tanzanian lethal decline of coconut, Nigerian lethal decline of coconut and loofah witches'-broom, respectively). Additional species are needed to accommodate organisms that, despite their 16S rRNA gene sequence being >97.5% similar to those of other 'Ca. Phytoplasma' species, are characterized by distinctive biological, phytopathological and genetic properties. These include 'Ca. Phytoplasma pyri' (associated with pear decline), 'Ca. Phytoplasma prunorum' (associated with European stone fruit yellows), 'Ca. Phytoplasma spartii' (associated with spartium witches'-broom), 'Ca. Phytoplasma rhamni' (associated with buckthorn witches'-broom), 'Ca. Phytoplasma allocasuarinae' (associated with allocasuarina yellows), 'Ca. Phytoplasma ulmi' (associated with elm yellows) and an additional taxon for the stolbur phytoplasma. Conversely, some organisms, despite their 16S rRNA gene sequence being <97.5% similar to that of any other 'Ca. Phytoplasma' species, are not presently described as Candidatus species, due to their poor overall characterization.
Collapse
|
16
|
Melamed S, Tanne E, Ben-Haim R, Edelbaum O, Yogev D, Sela I. Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA. J Bacteriol 2003; 185:6513-21. [PMID: 14594823 PMCID: PMC262124 DOI: 10.1128/jb.185.22.6513-6521.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplasmas are unculturable, insect-transmissible plant pathogens belonging to the class Mollicutes. To be transmitted, the phytoplasmas replicate in the insect body and are delivered to the insect's salivary glands, from where they are injected into the recipient plant. Because phytoplasmas cannot be cultured, any attempt to recover phytoplasmal DNA from infected plants or insects has resulted in preparations with a large background of host DNA. Thus, studies of the phytoplasmal genome have been greatly hampered, and aside from the rRNA genes, only a few genes have hitherto been isolated and characterized. We developed a unique method to obtain host-free phytoplasmal genomic DNA from the insect vector's saliva, and we demonstrated the feasibility of this method by isolating and characterizing 78 new putative phytoplasmal open reading frames and their deduced proteins. Based on the newly accumulated information on phytoplasmal genes, preliminary characteristics of the phytoplasmal genome are discussed.
Collapse
Affiliation(s)
- Sharon Melamed
- Institute for Plant Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Streten C, Gibb KS. Identification of genes in the tomato big bud phytoplasma and comparison to those in sweet potato little leaf-V4 phytoplasma. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1797-1805. [PMID: 12855731 DOI: 10.1099/mic.0.25971-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic relatedness of phytoplasmas is commonly defined on the basis of differences in the highly conserved 16S rRNA gene, which may not resolve closely related phytoplasmas. An example of this is the closely related tomato big bud (TBB) and sweet potato little leaf strain V4 (SPLL-V4) phytoplasmas, which cannot easily be differentiated by their 16S rRNA gene sequences. This study aimed to identify genes on the TBB phytoplasma chromosome which could be used to examine genetic variation between these two closely related phytoplasmas. Random clones generated from TBB phytoplasma genomic DNA were sequenced and characterized by database analysis. Twenty-three genes were identified within 19 random clones, which contained approximately 18.0 kbp of TBB phytoplasma genomic DNA. Half of the TBB phytoplasma genes identified were involved in DNA replication, transcription and translation. The remaining TBB phytoplasma genes were involved in protein secretion, cellular processes and energy metabolism. Phylogenetic analysis of representative genes showed that the TBB phytoplasma grouped with the mycoplasmas with the exception of the TBB phytoplasma secA gene, which grouped with the onion yellows phytoplasma. PCR primers were designed based on the new genes and tested on isolates of the TBB and SPLL-V4 phytoplasmas. Most primers amplified a product from TBB and SPLL-V4 phytoplasma samples. When amplified products were subjected to RFLP analysis, the restriction patterns were the same as the respective original clones. This result confirmed that the same sequence had been amplified by PCR and showed that these isolates were indistinguishable using the new genes. This study showed that in fact the TBB and SPLL-V4 phytoplasmas are closely related even with the analysis of new genes. These new genes have, however, provided insight into the biology of the TBB and SPLL-V4 phytoplasmas.
Collapse
Affiliation(s)
- Claire Streten
- Faculty of Education, Health and Science, Northern Territory University, Darwin, 0909, NT, Australia
| | - Karen S Gibb
- Faculty of Education, Health and Science, Northern Territory University, Darwin, 0909, NT, Australia
| |
Collapse
|
18
|
Oshima K, Shiomi T, Kuboyama T, Sawayanagi T, Nishigawa H, Kakizawa S, Miyata S, Ugaki M, Namba S. Isolation and Characterization of Derivative Lines of the Onion Yellows Phytoplasma that Do Not Cause Stunting or Phloem Hyperplasia. PHYTOPATHOLOGY 2001; 91:1024-1029. [PMID: 18943436 DOI: 10.1094/phyto.2001.91.11.1024] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Two lines of onion yellows phytoplasma producing milder symptoms were isolated from the original line (OY-W). One has an additional characteristic, non-insect-transmissibility (OY-NIM), compared with the other (OY-M). OY-M was established after maintaining OY-W for 11 years on a plant host (Chrysanthemum coronarium) with an insect vector (Macrosteles striifrons), and OY-NIM was isolated after subsequent maintenance of OY-M in plants by periodic grafting. Polymerase chain analysis suggested that OY-NIM cannot traverse the gut or survive in the hemolymph of the leafhopper. OY-W results in witches'-broom formation and stunted growth in the host plant. In contrast, OY-M and OY-NIM do not cause stunting in the host plant, although they result in witches'-broom. Histopathological analysis of these lines revealed that the hyperplastic phloem tissue and severe phloem necrosis seen in OY-W did not exist in OY-M and OY-NIM. This was attributed to a reduction in the population of phytoplasma in tissues in both OY-M- and OY-NIM-infected plants. The results suggest that the cause of stunting and phloem hyperplasia may be genetically different from the cause of witches'-broom. Pulsed field gel electrophoresis analysis showed that OY-M had a smaller genome size ( approximately 870 kbp) than OY-W ( approximately 1,000 kbp). Thus, some of the OY-W genes responsible for pathogenicity may not be present in OY-M.
Collapse
|
19
|
Marcone C, Seemüller E. A chromosome map of the European stone fruit yellows phytoplasma. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1213-1221. [PMID: 11320124 DOI: 10.1099/00221287-147-5-1213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A physical map of the European stone fruit yellows phytoplasma strain GSFY1 chromosome was constructed using PFGE-purified genomic DNA from diseased tobacco and tomato plants. The map was generated with single and double digestions of the chromosome with SmaI, BssHII, ApaI, BamHI and XhoI restriction endonucleases and the fragments were resolved by PFGE. Reciprocal double digestions were used to locate 26 restriction sites on the chromosome. Southern blot analysis was also used to assist in the arrangement of the contiguous restriction fragments obtained. From the restriction fragments generated by double digestion, the circular chromosome was calculated to be approximately 635 kb. Loci of two rRNA operons, the operon containing the tuf gene, genes encoding an immunodominant membrane protein and a putative nitroreductase, and randomly cloned DNA fragments IH184 and AT67 were placed on the map. Digestion of chromosomal DNA of strain GSFY1 with MluI gave a complex restriction pattern, suggesting that this isolate consists of a population with heterogeneity with respect to MluI restriction sites. The GSFY1 physical map was different from that of the closely related apple proliferation phytoplasma but the genetic arrangement was similar.
Collapse
Affiliation(s)
- Carmine Marcone
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany1
| | - Erich Seemüller
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany1
| |
Collapse
|