1
|
Tian S, Kim MS, Zhao J, Heber K, Hao F, Koslicki D, Tian S, Singh V, Patterson AD, Bisanz JE. A designed synthetic microbiota provides insight to community function in Clostridioides difficile resistance. Cell Host Microbe 2025; 33:373-387.e9. [PMID: 40037353 PMCID: PMC11911935 DOI: 10.1016/j.chom.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
Clostridioides difficile, a major cause of antibiotic-associated diarrhea, is suppressed by the gut microbiome, but the precise mechanisms are not fully described. Through a meta-analysis of 12 human studies, we designed a synthetic fecal microbiota transplant (sFMT1) by reconstructing microbial networks negatively associated with C. difficile colonization. This lab-built 37-strain consortium formed a functional community suppressing C. difficile in vitro and in animal models. Using sFMT1 as a tractable model system, we find that bile acid 7α-dehydroxylation is not a determinant of sFMT1 efficacy while one strain performing Stickland fermentation-a pathway of competitive nutrient utilization-is both necessary and sufficient for the suppression of C. difficile, replicating the efficacy of a human fecal transplant in a gnotobiotic mouse model. Our data illustrate the significance of nutrient competition in suppression of C. difficile and a generalizable approach to interrogating complex community function through robust methods to leverage publicly available sequencing data.
Collapse
Affiliation(s)
- Shuchang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Min Soo Kim
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingcheng Zhao
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerim Heber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - David Koslicki
- One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sangshan Tian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA; Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; One Health Microbiome Center, Huck Life Sciences Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Dabritz HA, Friberg IK, Payne JR, Moreno-Gorrin C, Lunquest K, Thomas D, Newman AP, Negrón EA, Drohan PJ. Elevated incidence of infant botulism in a 17-county area of the Mid-Atlantic region in the United States, 2000-2019, including association with soil types. Appl Environ Microbiol 2024; 90:e0106324. [PMID: 39480097 PMCID: PMC11577774 DOI: 10.1128/aem.01063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
We sought to identify counties in the northeastern United States where the incidence of infant botulism (IB) is elevated compared to the nationwide incidence and to assess associations with soil type at the case residence. IB cases were identified through the distribution of the orphan drug Human Botulism Immune Globulin Intravenous for treatment of IB by state and national surveillance systems and were subsequently confirmed by laboratory testing. IB incidence by county was calculated as the number of IB cases divided by the number of live births in the county from 2000 to 2019. Cases were spatially mapped and assigned to soil types using the US Department of Agriculture's online soils database. Possible association with soil type was evaluated with the Chi-squared test. We identified a rectangular area consisting of 17 contiguous counties in Delaware, Maryland, New Jersey, New York, and Pennsylvania, approximately 80 km by 250 km, in which the 20-year incidence of IB was nearly seven times greater than that of the remaining counties in those five states. Within this area, case residences were strongly associated with certain soil types (P ≤ 0.003). From 2000 to 2019, IB occurred with disproportionate incidence in a rectangular area encompassing the lower Delaware and Raritan River Valley and parts of five adjacent states. Further investigation of the soils in counties from this area could assess whether C. botulinum is more prevalent in certain soil types and whether isolation of C. botulinum is more common in counties with higher IB incidence. IMPORTANCE Infant botulism occurs more frequently in 17 counties within and adjacent to the Delaware and Raritan River watersheds. This study should alert physicians and pediatricians in the area to the higher likelihood of encountering cases of this otherwise rare disease that manifests with constipation, poor feeding, loss of head control, weak suck/cry, generalized weakness, and descending bilateral paralysis.
Collapse
Affiliation(s)
- Haydee A. Dabritz
- Infant Botulism Treatment and Prevention Program (IBTPP), Center for Laboratory Sciences, Infectious Diseases Laboratories Division, California Department of Public Health, Richmond, California, USA
| | - Ingrid K. Friberg
- Infant Botulism Treatment and Prevention Program (IBTPP), Center for Laboratory Sciences, Infectious Diseases Laboratories Division, California Department of Public Health, Richmond, California, USA
| | - Jessica R. Payne
- Infant Botulism Treatment and Prevention Program (IBTPP), Center for Laboratory Sciences, Infectious Diseases Laboratories Division, California Department of Public Health, Richmond, California, USA
| | - Camille Moreno-Gorrin
- Office of Infectious Disease Epidemiology, Delaware Department of Health and Social Services, Dover, Delaware, USA
| | - Kristy Lunquest
- Division of Infectious Disease Surveillance, Prevention and Health Promotion Administration, Maryland Department of Health, Baltimore, Maryland, USA
| | - Deepam Thomas
- Communicable Disease Service, Infectious Disease Epidemiology, New Jersey Department of Health, Trenton, New Jersey, USA
| | - Alexandra P. Newman
- Regional Epidemiology and Investigations Program, New York State Department of Health, Albany, New York, USA
| | - Elizabeth A. Negrón
- Bureau of Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
| | - Patrick J. Drohan
- Department of Ecosystems Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Horwell E, Bearn P, Cutting SM. A microbial symphony: a literature review of the factors that orchestrate the colonization dynamics of the human colonic microbiome during infancy and implications for future health. MICROBIOME RESEARCH REPORTS 2024; 4:1. [PMID: 40207275 PMCID: PMC11977369 DOI: 10.20517/mrr.2024.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Since the advent of new sequencing and bioinformatic technologies, our understanding of the human microbiome has expanded rapidly over recent years. Numerous studies have indicated causal links between alterations to the microbiome and a range of pathological conditions. Furthermore, a large body of epidemiological data is starting to suggest that exposure, or lack thereof, to specific microbial species during the first five years of life has key implications for long-term health outcomes. These include chronic inflammatory and metabolic conditions such as diabetes, asthma, inflammatory bowel disease (IBD), and obesity, with the effects lasting into adulthood. Human microbial colonisation during these first five years of life is a highly dynamic process, with multiple environmental exposures recently being characterised to have influence before the microbiome stabilises and resembles that of an adult at 3-5 years. This short period of time, known as the window of opportunity, appears to "prime" immunoregulation for later life. Understanding and appreciating this aspect of human physiology is therefore crucial for clinicians, scientists, and public health officials. This review outlines the most recent evidence for the pre- and post-natal environments that order the development of the microbiome, how these influences metabolic and immunoregulatory pathways, and their associated health outcomes. It also discusses the limitations of the current knowledge base, and describes the potential microbiome-mediated interventions and public health measures that may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Edward Horwell
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Philip Bearn
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Simon M. Cutting
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
| |
Collapse
|
4
|
Harris RA, Dabritz HA. Infant Botulism: In Search of Clostridium botulinum Spores. Curr Microbiol 2024; 81:306. [PMID: 39138824 PMCID: PMC11322261 DOI: 10.1007/s00284-024-03828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Infant botulism is now the most common form of human botulism in Canada and the United States. Infant botulism is a severe neuroparalytic disease caused by ingestion of the spore-forming neurotoxic clostridia, including Clostridium botulinum that colonize the large intestine and subsequently produce botulinum neurotoxin in situ. It has been over a century since the first surveys documenting the ubiquitous prevalence of C. botulinum in soils around the world. Since then, honey has been identified as the only well-known risk factor for infant botulism despite a multitude of international environmental surveys isolating C. botulinum spores from ground soil, aquatic sediments, and commonly available infant foods. Associations of infant botulism cases with confirmed sources of C. botulinum exposure have primarily implicated outdoor soil and indoor dust, as well as commonly ingested foods including honey, dry cereals, and even powdered infant formula. Yet the origin of infection remains unknown for most infant botulism cases. This review summarizes the various surveys from around the world for C. botulinum in environmental soils and sediments, honey, and other infant foods, as well as laboratory-confirmed associations with documented infant botulism cases. Additional factors are also discussed, including the composition of infant gut microbiota and the practice of breastfeeding. We make several recommendations to better identify sources of exposure to C. botulinum spores that could lead to effective preventive measures and help reduce the incidence of this rare but life-threatening disease.
Collapse
Affiliation(s)
- Richard A Harris
- Botulism Reference Service for Canada, Health Canada, Ottawa, ON, Canada.
| | - Haydee A Dabritz
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, CA, USA
| |
Collapse
|
5
|
Lee CC, Chiu CH. Link between gut microbiota and neonatal sepsis. J Formos Med Assoc 2024; 123:638-646. [PMID: 37821302 DOI: 10.1016/j.jfma.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
In neonates, the gastrointestinal tract is rapidly colonized by bacteria after birth. Gut microbiota development is critical during the first few years of life. However, disruption of gut microbiota development in neonates can lead to gut dysbiosis, characterized by overcolonization by pathogenic bacteria and delayed or failed maturation toward increasing microbial diversity and Fermicutes dominance. Gut dysbiosis can predispose infants to sepsis. Pathogenic bacteria can colonize the gut prior to sepsis and cause sepsis through translocation. This review explores gut microbiota development in neonates, the evidence linking gut dysbiosis to neonatal sepsis, and the potential role of probiotics in gut microbiota modulation and sepsis prevention.
Collapse
Affiliation(s)
- Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Xiao J. Role of the Gut Microbiota-Brain Axis in Brain Damage in Preterm Infants. ACS Pharmacol Transl Sci 2024; 7:1197-1204. [PMID: 38751622 PMCID: PMC11091980 DOI: 10.1021/acsptsci.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The greatest repository of microbes in the human body, the intestinal microbiome, is involved in neurological development, aging, and brain illnesses such as white matter injury (WMI) in preterm newborns. Intestinal microorganisms constitute a microbial gut-brain axis that serves as a crucial conduit for communication between the gut and the nervous system. This axis controls inflammatory cytokines, which in turn influence the differentiation of premyelinating oligodendrocytes (pre-OLs) and influence the incidence of WMI in premature newborns through the metabolites generated by gut microbes. Here, we describe the effects of white matter injury (WMI) on intestinal dysbiosis and gut dysfunction and explain the most recent research findings on the gut-brain axis in both humans and animals. We also emphasize the delicate relationship that exists between the microbiota and the brain following acute brain injury. The role that the intestinal microflora plays in influencing host metabolism, the immune system, brain health, and the course of disease is becoming increasingly clear, but there are still gaps in the field of WMI treatment. Thus, this review demonstrates the function of the gut microflora-brain axis in WMI and elucidates the possible mechanisms underlying the communication between gut bacteria and the developing brain via the gut-brain axis, potentially opening up new avenues for microbial-based intervention and treatment for preterm WMI.
Collapse
Affiliation(s)
- Jie Xiao
- Department
of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, 435000 Huangshi, P. R. China
| |
Collapse
|
7
|
Versluis DM, Schoemaker R, Looijesteijn E, Geurts JM, Merks RM. 2'-Fucosyllactose helps butyrate producers outgrow competitors in infant gut microbiota simulations. iScience 2024; 27:109085. [PMID: 38380251 PMCID: PMC10877688 DOI: 10.1016/j.isci.2024.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2'-fucosyllactose (2'-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2'-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2'-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites.
Collapse
Affiliation(s)
- David M. Versluis
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
| | | | | | | | - Roeland M.H. Merks
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
- Leiden University, Mathematical Institute, 2300 RA Leiden, the Netherlands
| |
Collapse
|
8
|
Ji H, Guo M, Yang F, Liang H, Wang Z, Chen Y, Zheng H, Miao M, Yuan W. Prenatal per- and polyfluoroalkyl substances exposure and gut microbiota of infants: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115891. [PMID: 38159339 DOI: 10.1016/j.ecoenv.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) has been reported to be linked to a series of adverse health outcomes in mothers and their children. As the gut microbiota is a sensitive biomarker for assessing the toxicity of environmental contaminants, this study attempted to investigate whether prenatal PFASs exposure was associated with the gut microbiota of infants. Based on the Shanghai-Minhang Birth Cohort Study, this prospective cohort study included 69 mother-infant pairs. Fasting blood samples were collected from pregnant women for the PFASs assay. We collected fecal samples of infants at 1 year of age and analyzed the V3-V4 hypervariable region of the bacterial 16 S rRNA gene by high-throughput sequencing. Among the detected 11 PFASs, the concentration of perfluorooctanoic acid (22.19 ng/mL) was the highest, followed by perfluorooctane sulfonic acid (12.08 ng/mL). Compared with infants whose mothers' total PFASs concentrations during pregnancy were at the 40th percentile or lower (reference group), the species richness and diversity of microbiota were lower in infants prenatally exposed to a high level of PFASs (the sum of PFASs concentrations above the 60th percentile). Prenatal exposure to PFASs was associated with a higher proportion of Acidaminococcaceae, Acidaminococcus, Megamonas, Megasphaera micronuciformis and Megamonas funiformis in infants. The changes of the species have been suggested to be associated with immune and metabolic dysfunction in humans. Functional alterations of gut microbiota due to PFASs exposure were dominated by an enrichment of butanoate metabolism. Our preliminary findings may shed light on the potential role of the microbiota underlying the well-known impact of prenatal PFASs exposure on health outcomes of humans in later life.
Collapse
Affiliation(s)
- Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Fen Yang
- Department of Global Public Health, Karolinska Institutet, Sweden
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
9
|
Zeng R, Chen J, Peng Y, Xu W, Tao Y, Li M, Zhang R, Meng J, Li Z, Zeng L, Huang J. Microglia are necessary for probiotics supplementation to improve impaired fear extinction caused by pregnancy stress in adult offspring of rats. Neurobiol Stress 2024; 28:100591. [PMID: 38075026 PMCID: PMC10709091 DOI: 10.1016/j.ynstr.2023.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment of fear-related disorders in offspring affected by pregnancy stress remains challenging at clinic. Here, we examined the effects of gut microbiota of stressed pregnant rats on the fear extinction of their offsprings, and the potential mechanisms. We found that gut microbiota transplantation from rats with pregnancy stress to normal pregnant rats impaired fear extinction, induced microglial activation and synaptic phagocytosis, increased synapse loss in offsprings. Probiotics supplement during pregnancy stress partly normalized pregnancy stress-induced gut microbiota dysbiosis of pregnant rats, and promoted fear memory extinction, inhibited fear memory reappearance, and limited microglial activation and synaptic phagocytosis in offsprings. These data revealed that gut microbiota of stressed pregnant mother improved the development of fear-related disorders of offspring, which may be associated with microglial synaptic pruning.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ruqi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
10
|
Bettag J, Goldenberg D, Carter J, Morfin S, Borsotti A, Fox J, ReVeal M, Natrop D, Gosser D, Kolli S, Jain AK. Gut Microbiota to Microglia: Microbiome Influences Neurodevelopment in the CNS. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1767. [PMID: 38002858 PMCID: PMC10670365 DOI: 10.3390/children10111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
The brain is traditionally viewed as an immunologically privileged site; however, there are known to be multiple resident immune cells that influence the CNS environment and are reactive to extra-CNS signaling. Microglia are an important component of this system, which influences early neurodevelopment in addition to modulating inflammation and regenerative responses to injury and infection. Microglia are influenced by gut microbiome-derived metabolites, both as part of their normal function and potentially in pathological patterns that may induce neurodevelopmental disabilities or behavioral changes. This review aims to summarize the mounting evidence indicating that, not only is the Gut-Brain axis mediated by metabolites and microglia throughout an organism's lifetime, but it is also influenced prenatally by maternal microbiome and diet, which holds implications for both early neuropathology and neurodevelopment.
Collapse
Affiliation(s)
- Jeffery Bettag
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Daniel Goldenberg
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sylvia Morfin
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Alison Borsotti
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - James Fox
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Matthew ReVeal
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Dylan Natrop
- Medical College of Wisconsin-Green Bay, De Pere, WI 54115, USA;
| | - David Gosser
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sree Kolli
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Ajay K. Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| |
Collapse
|
11
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
12
|
Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces. Food Chem 2023; 410:135413. [PMID: 36623461 DOI: 10.1016/j.foodchem.2023.135413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The gut microbiota plays an evolutionarily conserved role in host metabolism, which is influenced by diet. Here, we investigated differences in shaping the gut microbiota and regulating metabolism in cow milk-based infant formula, goat milk-based infant formula, and mix milk-based infant formula compared with pasteurized human milk. 16S rRNA results showed that goat milk-based infant formula selectively increased the relative abundance of Blautia, Roseburia, Alistites and Muribaculum in the gut compared to other infant formulas. Metabolomics identification indicated that goat milk-based infant formula mainly emphasized bile acid biosynthesis, arachidonic acid metabolism and steroid biosynthesis metabolic pathways. Metabolites associated with these metabolic pathways were positively associated with increased microorganisms in goat milk-based infant formula, particularly Alistipes. Furthermore, we found a deficiency of Akkermansia abundance in three infant formula-fed compared to pasteurizedhuman milk-fed. This study presents new insights into the improvement and application of goat milk-based infant formulas in terms of intestinal microecology.
Collapse
|
13
|
Street ME, Shulhai AM, Rotondo R, Giannì G, Caffarelli C. Current knowledge on the effects of environmental contaminants in early life nutrition. Front Nutr 2023; 10:1120293. [PMID: 37324741 PMCID: PMC10267348 DOI: 10.3389/fnut.2023.1120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Breast milk represents the optimal source of feeding for newborns, in terms of nutritional compounds and as it provides immunological, metabolic, organic, and neurological well-being. As a complex biological fluid, it consists not only of nutritional compounds but also contains environmental contaminants. Formulas through production, contact with bottles and cups, and complementary feeding can also be contaminated. The current review focuses on endocrine-disrupting chemicals, and made-man xenoestrogens present in the environment and both commonly present in food sources, agricultural practices, packaging, consumer products, industry, and medical care. These contaminants are transferred by passive diffusion to breast milk and are delivered during breastfeeding. They mainly act by activating or antagonizing hormonal receptors. We summarize the effects on the immune system, gut microbiota, and metabolism. Exposure to endocrine-disrupting chemicals and indirect food additives may induce tissue inflammation and polarize lymphocytes, increase proinflammatory cytokines, promote allergic sensitization, and microbial dysbiosis, activate nuclear receptors and increase the incidence of allergic, autoimmune, and metabolic diseases. Breast milk is the most important optimal source in early life. This mini-review summarizes current knowledge on environmental contaminants and paves the way for strategies to prevent milk contamination and limit maternal and infant exposure during pregnancy and the first months of life.
Collapse
Affiliation(s)
- Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Giuliana Giannì
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Carlo Caffarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| |
Collapse
|
14
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
15
|
Kumari P, Raval A, Rana P, Mahto SK. Regenerative Potential of Human Breast Milk: A Natural Reservoir of Nutrients, Bioactive Components and Stem cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10534-0. [PMID: 37012485 DOI: 10.1007/s12015-023-10534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Human milk is a complex fluid that contains carbohydrates, lipids, proteins, and other bioactive molecules (immunoglobulins, lactoferrin, human milk oligosaccharides, lysozyme, leukocytes, cytokines, hormones, and microbiome) which provide nutritional, immunological, and developmental benefits to the infant. In addition to their involvement in the development, these bioactive compounds have a key role in anti-oncogenicity, neuro-cognitive development, cellular communication, and differentiation. As a result of technological advancements, it has been discovered that human breast milk contains cells that display many of the characteristics of stem cells with multilineage differentiation potentials. Do these cells have any specific properties or roles? Research efforts on breast milk cells have been mainly focused on leukocytes based on their immunological perspective in the early postpartum period. This review summarizes the nutritional components in human milk, i.e., the macro and micronutrients required for the growth and development of infants. Further, it discusses the research work reported concerning the purification, propagation, and differentiation of breast milk progenitor cells and highlights the advancements made in this newly emerging field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Aayushi Raval
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Pranav Rana
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
16
|
Veeraraghavan B, Kesavelu D, Yadav B. Gut Microbiota Composition in Indian and Western Infants (0–24 Months): A Systematic Review. NUTRITION AND DIETARY SUPPLEMENTS 2023. [DOI: 10.2147/nds.s402256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
17
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:1496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
18
|
Infant Fecal Fermentations with Galacto-Oligosaccharides and 2′-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. CHILDREN 2023; 10:children10030430. [PMID: 36979988 PMCID: PMC10047592 DOI: 10.3390/children10030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The objective of the current study was to evaluate the potential of 2′-FL and GOS, individually and combined, in beneficially modulating the microbial composition of infant and toddler (12–18 months) feces using the micro-Matrix bioreactor. In addition, the impacts of GOS and 2′-FL, individually and combined, on the outgrowth of fecal bifidobacteria at (sub)species level was investigated using the baby M-SHIME® model. For young toddlers, significant increases in the genera Bifidobacterium, Veillonella, and Streptococcus, and decreases in Enterobacteriaceae, Clostridium XIVa, and Roseburia were observed in all supplemented fermentations. In addition, GOS, and combinations of GOS and 2′-FL, increased Collinsella and decreased Salmonella, whereas 2′-FL, and combined GOS and 2′-FL, decreased Dorea. Alpha diversity increased significantly in infants with GOS and/or 2′-FL, as well as the relative abundances of the genera Veillonella and Akkermansia with 2′-FL, and Lactobacillus with GOS. Combinations of GOS and 2′-FL significantly stimulated Veillonella, Lactobacillus, Bifidobacterium, and Streptococcus. In all supplemented fermentations, Proteobacteria decreased, with the most profound decreases accomplished by the combination of GOS and 2′-FL. When zooming in on the different (sub)species of Bifidobacterium, GOS and 2’-FL were shown to be complementary in stimulating breast-fed infant-associated subspecies of Bifidobacterium longum in a dose-dependent manner: GOS stimulated Bifidobacterium longum subsp. longum, whereas 2′-FL supported outgrowth of Bifidobacterium longum subsp. infantis.
Collapse
|
19
|
Galley JD, Mashburn-Warren L, Blalock LC, Lauber CL, Carroll JE, Ross KM, Hobel C, Coussons-Read M, Dunkel Schetter C, Gur TL. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav Immun 2023; 107:253-264. [PMID: 36240906 DOI: 10.1016/j.bbi.2022.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Uncovering mechanisms underlying fetal programming during pregnancy is of critical importance. Atypical neurodevelopment during the pre- and immediate postnatal period has been associated with long-term adverse health outcomes, including mood disorders and aberrant cognitive ability in offspring. Maternal factors that have been implicated in anomalous offspring development include maternal inflammation and tress, anxiety, and depression. One potential mechanism through which these factors perturb normal offspring postnatal development is through microbiome disruption. The mother is a primary source of early postnatal microbiome seeding for the offspring, and the transference of a healthy microbiome is key in normal neurodevelopment. Since psychological stress, mood disorders, and inflammation have all been implicated in altering maternal microbiome community structure, passing on aberrant microbial communities to the offspring that may then affect developmental outcomes. Therefore, we examined how maternal stress, anxiety and depression assessed with standardized instruments, and maternal inflammatory cytokine levels in the pre- and postnatal period are associated with the offspring microbiome within the first 13 months of life, utilizing full length 16S sequencing on infant stool samples, that allowed for species-level resolution. Results revealed that infants of mothers who reported higher anxiety and perceived stress had reduced alpha diversity. Additionally, the relative taxonomic quantitative abundances of Bifidobacterium dentium and other species that have been associated with either modulation of the gut-brain axis, or other beneficial health outcomes, were reduced in the offspring of mothers with higher anxiety, perceived stress, and depression. We also found associations between bifidobacteria and prenatal maternal pro-inflammatory cytokines IL-6, IL-8, and IL-10. In summary, specific microbial taxa involved in maintaining proper brain and immune function are lower in offspring born to mothers with anxiety, depression, or stress, providing strong evidence for a mechanism by which maternal factors may affect offspring health through microbiota dysregulation.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Lexie C Blalock
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian L Lauber
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kharah M Ross
- Center for Social Sciences, Athabasca University, Athabasca, Alberta, Canada
| | - Calvin Hobel
- Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Mary Coussons-Read
- Department of Psychology, The University of Colorado, Colorado Springs, CO, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
20
|
Piccioni A, Rosa F, Manca F, Pignataro G, Zanza C, Savioli G, Covino M, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Gut Microbiota and Clostridium difficile: What We Know and the New Frontiers. Int J Mol Sci 2022; 23:13323. [PMID: 36362106 PMCID: PMC9657115 DOI: 10.3390/ijms232113323] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Our digestive system, particularly our intestines, harbors a vast amount of microorganisms, whose genetic makeup is referred to as the microbiome. Clostridium difficile is a spore-forming Gram-positive bacterium, which can cause an infection whose symptoms range from asymptomatic colonization to fearsome complications such as the onset of toxic megacolon. The relationship between gut microbiota and Clostridium difficile infection has been studied from different perspectives. One of the proposed strategies is to be able to specifically identify which types of microbiota alterations are most at risk for the onset of CDI. In this article, we understood once again how crucial the role of the human microbiota is in health and especially how crucial it becomes, in the case of its alteration, for the individual's disease. Clostridium difficile infection is an emblematic example of how a normal and physiological composition of the human microbiome can play a very important role in immune defense against such a fearsome disease.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Federico Rosa
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Manca
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Christian Zanza
- Foundation of Ospedale Alba-Bra, Department of Anesthesia, Critical Care and Emergency Medicine, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy
| | - Gabriele Savioli
- Emergency Department, Policlinico Universitario San Matteo, IRCCS, 27100 Pavia, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Ojetti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
21
|
A Multiscale Spatiotemporal Model Including a Switch from Aerobic to Anaerobic Metabolism Reproduces Succession in the Early Infant Gut Microbiota. mSystems 2022; 7:e0044622. [PMID: 36047700 PMCID: PMC9600552 DOI: 10.1128/msystems.00446-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human intestinal microbiota starts to form immediately after birth and is important for the health of the host. During the first days, facultatively anaerobic bacterial species generally dominate, such as Enterobacteriaceae. These are succeeded by strictly anaerobic species, particularly Bifidobacterium species. An early transition to Bifidobacterium species is associated with health benefits; for example, Bifidobacterium species repress growth of pathogenic competitors and modulate the immune response. Succession to Bifidobacterium is thought to be due to consumption of intracolonic oxygen present in newborns by facultative anaerobes, including Enterobacteriaceae. To study if oxygen depletion suffices for the transition to Bifidobacterium species, here we introduced a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics, and cross-feeding. Using publicly available metabolic network data from the AGORA collection, the model simulates ab initio the competition of strictly and facultatively anaerobic species in a gut-like environment under the influence of lactose and oxygen. The model predicts that individual differences in intracolonic oxygen in newborn infants can explain the observed individual variation in succession to anaerobic species, in particular Bifidobacterium species. Bifidobacterium species became dominant in the model by their use of the bifid shunt, which allows Bifidobacterium to switch to suboptimal yield metabolism with fast growth at high lactose concentrations, as predicted here using flux balance analysis. The computational model thus allows us to test the internal plausibility of hypotheses for bacterial colonization and succession in the infant colon. IMPORTANCE The composition of the infant microbiota has a great impact on infant health, but its controlling factors are still incompletely understood. The frequently dominant anaerobic Bifidobacterium species benefit health, e.g., they can keep harmful competitors under control and modulate the intestinal immune response. Controlling factors could include nutritional composition and intestinal mucus composition, as well as environmental factors, such as antibiotics. We introduce a modeling framework of a metabolically realistic intestinal microbial ecology in which hypothetical scenarios can be tested and compared. We present simulations that suggest that greater levels of intraintestinal oxygenation more strongly delay the dominance of Bifidobacterium species, explaining the observed variety of microbial composition and demonstrating the use of the model for hypothesis generation. The framework allowed us to test a variety of controlling factors, including intestinal mixing and transit time. Future versions will also include detailed modeling of oligosaccharide and mucin metabolism.
Collapse
|
22
|
Abstract
Changes in the composition of the gut microbiota are associated with many human diseases. So far, however, we have failed to define homeostasis or dysbiosis by the presence or absence of specific microbial species. The composition and function of the adult gut microbiota is governed by diet and host factors that regulate and direct microbial growth. The host delivers oxygen and nitrate to the lumen of the small intestine, which selects for bacteria that use respiration for energy production. In the colon, by contrast, the host limits the availability of oxygen and nitrate, which results in a bacterial community that specializes in fermentation for growth. Although diet influences microbiota composition, a poor diet weakens host control mechanisms that regulate the microbiota. Hence, quantifying host parameters that control microbial growth could help define homeostasis or dysbiosis and could offer alternative strategies to remediate dysbiosis.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
23
|
Michel C, Blottière HM. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front Microbiol 2022; 13:825942. [PMID: 35783422 PMCID: PMC9247513 DOI: 10.3389/fmicb.2022.825942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment. This proposal is supported by indisputable findings such as the concomitance of microbiota assembly and the first 1,000-day period, the influence of perinatal conditions on microbiota composition, and the impact of microbiota composition on host physiology, and is based on the widely held but unconfirmed view that the microbiota is long-lastingly shaped early in life. In this review, we examine the plausibility of the gut microbiota being programmed by the neonatal environment and evaluate the evidence for its validity. We highlight that the capacity of the pioneer bacteria to control the implantation of subsequent bacteria is supported by both theoretical principles and statistical associations, but remains to be demonstrated experimentally. In addition, our critical review of the literature on the long-term repercussions of selected neonatal modulations of the gut microbiota indicates that sustained programming of the microbiota composition by neonatal events is unlikely. This does not exclude the microbiota having a role in DOHaD due to a possible interaction with tissue and organ development during the critical windows of neonatal life.
Collapse
Affiliation(s)
| | - Hervé M. Blottière
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| |
Collapse
|
24
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Valentini F, Rocchi G, Vespasiani-Gentilucci U, Guarino MPL, Altomare A, Carotti S. The Origins of NAFLD: The Potential Implication of Intrauterine Life and Early Postnatal Period. Cells 2022; 11:562. [PMID: 35159371 PMCID: PMC8834011 DOI: 10.3390/cells11030562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal life and the first few months after birth represent a plastic age, defined as a "window of opportunity", as the organism is particularly susceptible to environmental pressures and has to adapt to environmental conditions. Several perturbations in pregnancy, such as excessive weight gain, obesity, gestational diabetes mellitus and an inadequate or high-fat diet, have been associated with long-term metabolic consequences in offspring, even without affecting birth weight. Moreover, great interest has also been focused on the relationship between the gut microbiome of early infants and health status in later life. Consistently, in various epidemiological studies, a condition of dysbiosis has been associated with an increased inflammatory response and metabolic alterations in the host, with important consequences on the intestinal and systemic health of the unborn child. This review aims to summarize the current knowledge on the origins of NAFLD, with particular attention to the potential implications of intrauterine life and the early postnatal period. Due to the well-known association between gut microbiota and the risk of NAFLD, a specific focus will be devoted to factors affecting early microbiota formation/composition.
Collapse
Affiliation(s)
- Francesco Valentini
- Pediatric Unit, Sant’Andrea Hospital, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Giulia Rocchi
- Unit of Food Science and Human Nutrition, Campus Biomedico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Umberto Vespasiani-Gentilucci
- Unit of Internal Medicine and Hepatology, Fondazione Policlinico Campus Biomedico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Fondazione Policlinico Campus Biomedico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Annamaria Altomare
- Gastroenterology Unit, Fondazione Policlinico Campus Biomedico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| |
Collapse
|
26
|
Contribution of Gut Microbiota to Immune Tolerance in Infants. J Immunol Res 2022; 2021:7823316. [PMID: 34993254 PMCID: PMC8727111 DOI: 10.1155/2021/7823316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of food allergy has increased in recent years, especially among the pediatric population. Differences in the gut microbiota composition between children with FA and healthy children have brought this topic into the spotlight as a possible explanation for the increase in FA. The gut microbiota characteristics are acquired through environmental interactions starting early in life, such as type of delivery during birth and breastfeeding. The microbiota features may be shaped by a plethora of immunomodulatory mechanisms, including a predominant role of Tregs and the transcription factor FOXP3. Additionally, a pivotal role has been given to vitamin A and butyrate, the main anti-inflammatory metabolite. These observations have led to the study and development of therapies oriented to modifying the microbiota and metabolite profiles, such as the use of pre- and probiotics and the determination of their capacity to induce tolerance to allergens that are relevant to FA. To date, evidence supporting these approaches in humans is scarce and inconclusive. Larger cohorts and dose-titration studies are mandatory to evaluate whether the observed changes in gut microbiota composition reflect medical recovery and increased tolerance in pediatric patients with FA. In this article, we discuss the establishment of the microbiota, the immunological mechanisms that regulate the microbiota of children with food allergies, and the evidence in research focused on its regulation as a means to achieve tolerance to food allergens.
Collapse
|
27
|
Is There a Role for the Microbiome and Sudden Death? A Systematic Review. Life (Basel) 2021; 11:life11121345. [PMID: 34947876 PMCID: PMC8706612 DOI: 10.3390/life11121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background. Sudden unexpected death (SUD) is one of the most important and worthy investigation case profiles in emergency medicine and forensic pathology. Sudden unexpected deaths in adults (SUDA) are frequently caused by cardiac events, while infections usually cause those in infants younger than one year (SUDI), and to a lesser extent, in children older than one year (SUDC). However, in some instances of children under the age of one dying (SIDS), a cause is not discovered despite a thorough investigation that includes a review of clinical history, examination of the death scene, and a complete autopsy. Several studies demonstrate that the microbiome influences host immunity, alters susceptibility to viral respiratory infections, and has a vital role in various health, disease, and death outcomes. The main objective of this systematic review was to compile and offer a complete vision of the main lines of research on microbiome and sudden death that have emerged in recent years and their relationship with forensic sciences, as well as the possible contributions or limitations in the field of forensic sciences. Methods. Following PRISMA principles, a systematic evaluation of the microbiome and sudden death in forensic science was conducted. In this review, our study classified the sudden deaths as SUDA, SUDI, and SIDS. Results. The role of microbiome research in sudden death is discussed in this review. Various studies have linked the detection of different bacteria or viruses as a probable cause of sudden death. Bacteria analysed differ between studies that used autopsy specimens from deaths classified as SUDA, SUDI, and SIDS, or, except in the case of Staphylococcus aureus and Escherichia coli, which have been analysed in both SUDI and SIDS autopsies. In the case of viruses, only Cytomegalovirus has been analysed in both SIDS and SUDI cases. However, all the viruses studied are respiratory viruses found in samples of nasopharyngeal or lung fluid. Conclusions. Although the application of the microbiome in sudden death and other fields of forensic science is still in its early stages, a role of the microbiome in sudden deaths cannot be ruled out, but we cannot conclude that it is a significant factor either.
Collapse
|
28
|
Antonucci L, Locci C, Schettini L, Clemente MG, Antonucci R. Infant botulism: an underestimated threat. Infect Dis (Lond) 2021; 53:647-660. [PMID: 33966588 DOI: 10.1080/23744235.2021.1919753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022] Open
Abstract
Infant botulism (IB) is defined as a potentially life-threatening neuroparalytic disorder affecting children younger than 12 months. It is caused by ingestion of food or dust contaminated by Clostridium botulinum spores, which germinate in the infant's large bowel and produce botulinum neurotoxin. Although the real impact of IB is likely underestimated worldwide, the USA has the highest number of cases. The limited reporting of IB in many countries is probably due to diagnostic difficulties and nonspecific presentation. The onset is usually heralded by constipation, followed by bulbar palsy, and then by a descending bilateral symmetric paralysis; ultimately, palsy can involve respiratory and diaphragmatic muscles, leading to respiratory failure. The treatment is based on supportive care and specific therapy with Human Botulism Immune Globulin Intravenous (BIG-IV), and should be started as early as possible. The search for new human-like antibody preparations that are both highly effective and well tolerated has led to the creation of a mixture of oligoclonal antibodies that are highly protective and can be produced in large quantities without the use of animals. Ongoing research for future treatment of IB involves the search for new molecular targets to produce a new generation of laboratory-produced antitoxins, and the development of new vaccines with safety and efficacy profiles that can be scaled up for clinical use. This narrative literature review aims to provide a readable synthesis of the best current literature on microbiological, epidemiological and clinical features of IB, and a practical guide for its treatment.
Collapse
Affiliation(s)
- Luca Antonucci
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Cristian Locci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Livia Schettini
- Academic Department of Pediatrics, Children's Hospital Bambino Gesù, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Pediatric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
29
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
30
|
Mishra VN, Mandal PK. One-pot iterative glycosylations toward a tetrasaccharide related to the O-specific polysaccharide from Escherichia coli O132. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1928153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vijay Nath Mishra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Ioannou A, Knol J, Belzer C. Microbial Glycoside Hydrolases in the First Year of Life: An Analysis Review on Their Presence and Importance in Infant Gut. Front Microbiol 2021; 12:631282. [PMID: 34122357 PMCID: PMC8194493 DOI: 10.3389/fmicb.2021.631282] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
The first year of life is a crucial period during which the composition and functionality of the gut microbiota develop to stabilize and resemble that of adults. Throughout this process, the gut microbiota has been found to contribute to the maturation of the immune system, in gastrointestinal physiology, in cognitive advancement and in metabolic regulation. Breastfeeding, the “golden standard of infant nutrition,” is a cornerstone during this period, not only for its direct effect but also due to its indirect effect through the modulation of gut microbiota. Human milk is known to contain indigestible carbohydrates, termed human milk oligosaccharides (HMOs), that are utilized by intestinal microorganisms. Bacteria that degrade HMOs like Bifidobacterium longum subsp. infantis, Bifidobacterium bifidum, and Bifidobacterium breve dominate the infant gut microbiota during breastfeeding. A number of carbohydrate active enzymes have been found and identified in the infant gut, thus supporting the hypothesis that these bacteria are able to degrade HMOs. It is suggested that via resource-sharing and cross-feeding, the initial utilization of HMOs drives the interplay within the intestinal microbial communities. This is of pronounced importance since these communities promote healthy development and some of their species also persist in the adult microbiome. The emerging production and accessibility to metagenomic data make it increasingly possible to unravel the metabolic capacity of entire ecosystems. Such insights can increase understanding of how the gut microbiota in infants is assembled and makes it a possible target to support healthy growth. In this manuscript, we discuss the co-occurrence and function of carbohydrate active enzymes relevant to HMO utilization in the first year of life, based on publicly available metagenomic data. We compare the enzyme profiles of breastfed children throughout the first year of life to those of formula-fed infants.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
32
|
Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol 2021; 61:100912. [PMID: 33713673 DOI: 10.1016/j.yfrne.2021.100912] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex system, consisting of a dynamic population of microorganisms, involved in the regulation of the host's homeostasis. A vast number of factors are driving the gut microbiota composition including diet, antibiotics, environment, and lifestyle. However, in the past decade, a growing number of studies also focused on the role of sex in relationship to changes in the gut microbiota composition in animal experiments as well as in human beings. Despite the progress in investigation techniques, still little is known about the mechanism behind the observed sex-related differences. In this review, we summarized current knowledge on the sex-dependent differences of the intestinal commensals and discuss the probable direct impact of sex hormones and more indirect effects such as dietary habits or antibiotics. While we have to conclude limited data on specific developmental stages, a clear role for sexual hormones and most probably for testosterone emerges.
Collapse
Affiliation(s)
- Francesco Valeri
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany.
| |
Collapse
|
33
|
Soriano VX, Koplin JJ, Forrester M, Peters RL, O'Hely M, Dharmage SC, Wright R, Ranganathan S, Burgner D, Thompson K, Dwyer T, Vuillerman P, Ponsonby AL. Infant pacifier sanitization and risk of challenge-proven food allergy: A cohort study. J Allergy Clin Immunol 2021; 147:1823-1829.e11. [PMID: 33810856 DOI: 10.1016/j.jaci.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/07/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Environmental microbial exposure plays a role in immune system development and susceptibility to food allergy. OBJECTIVE We sought to investigate whether infant pacifier use during the first postnatal year, with further consideration of sanitization, alters the risk of food allergy by age 1 year. METHODS The birth cohort recruited pregnant mothers at under 28 weeks' gestation in southeast Australia, with 894 families followed up when infants turned 1 year. Infants were excluded if born under 32 weeks, with a serious illness, major congenital malformation, or genetic disease. Questionnaire data, collected at recruitment and infant ages 1, 6, and 12 months, included pacifier use and pacifier sanitization (defined as the joint exposure of a pacifier and cleaning methods). Challenge-proven food allergy was assessed at 12 months. RESULTS Any pacifier use at 6 months was associated with food allergy (adjusted odds ratio, 1.94; 95% CI, 1.04-3.61), but not pacifier use at other ages. This overall association was driven by the joint exposure of pacifier-antiseptic use (adjusted odds ratio, 4.83; 95% CI, 1.10-21.18) compared with no pacifier use. Using pacifiers without antiseptic at 6 months was not associated with food allergy. Among pacifier users, antiseptic cleaning was still associated with food allergy (adjusted odds ratio, 3.56; 95% CI, 1.18-10.77) compared with no antiseptic use. Furthermore, persistent and repeated antiseptic use over the first 6 months was associated with higher food allergy risk (P = .029). CONCLUSIONS This is the first report of a pacifier-antiseptic combination being associated with a higher risk of subsequent food allergy. Future work should investigate underlying biological pathways.
Collapse
Affiliation(s)
- Victoria X Soriano
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Jennifer J Koplin
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Mike Forrester
- School of Medicine, Deakin University, Geelong, Australia; Children's Services, Barwon Health, Geelong, Australia; St John of God Hospital, Geelong, Australia
| | - Rachel L Peters
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- School of Medicine, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Rosemary Wright
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - David Burgner
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Terence Dwyer
- Heart Research Group, Murdoch Children's Research Institute, Parkville, Australia; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Peter Vuillerman
- School of Medicine, Deakin University, Geelong, Australia; Children's Services, Barwon Health, Geelong, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia; Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Parkville, Australia; Neuroepidemiology Research Group, Florey Institute for Neuroscience and Mental Health, Parkville, Australia.
| | | |
Collapse
|
34
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
35
|
Sorensen K, Cawood AL, Gibson GR, Cooke LH, Stratton RJ. Amino Acid Formula Containing Synbiotics in Infants with Cow's Milk Protein Allergy: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:935. [PMID: 33799379 PMCID: PMC7998621 DOI: 10.3390/nu13030935] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cow's milk protein allergy (CMPA) is associated with dysbiosis of the infant gut microbiome, with allergic and immune development implications. Studies show benefits of combining synbiotics with hypoallergenic formulae, although evidence has never been systematically examined. This review identified seven publications of four randomised controlled trials comparing an amino acid formula (AAF) with an AAF containing synbiotics (AAF-Syn) in infants with CMPA (mean age 8.6 months; 68% male, mean intervention 27.3 weeks, n = 410). AAF and AAF-Syn were equally effective in managing allergic symptoms and promoting normal growth. Compared to AAF, significantly fewer infants fed AAF-Syn had infections (OR 0.35 (95% CI 0.19-0.67), p = 0.001). Overall medication use, including antibacterials and antifectives, was lower among infants fed AAF-Syn. Significantly fewer infants had hospital admissions with AAF-Syn compared to AAF (8.8% vs. 20.2%, p = 0.036; 56% reduction), leading to potential cost savings per infant of £164.05-£338.77. AAF-Syn was associated with increased bifidobacteria (difference in means 31.75, 95% CI 26.04-37.45, p < 0.0001); reduced Eubacterium rectale and Clostridium coccoides (difference in means -19.06, 95% CI -23.15 to -14.97, p < 0.0001); and reduced microbial diversity (p < 0.05), similar to that described in healthy breastfed infants, and may be associated with the improved clinical outcomes described. This review provides evidence that suggests combining synbiotics with AAF produces clinical benefits with potential economic implications.
Collapse
Affiliation(s)
- Katy Sorensen
- Medical Affairs, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
| | - Abbie L. Cawood
- Medical Affairs, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
- Institute of Human Nutrition, Faculty of Medicine, Mailpoint 113, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.L.C.); (R.J.S.)
| | - Glenn R. Gibson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK;
| | - Lisa H. Cooke
- Department of Nutrition and Dietetics, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK;
| | - Rebecca J. Stratton
- Medical Affairs, Nutricia Ltd., White Horse Business Park, Trowbridge BA14 0XQ, UK
- Institute of Human Nutrition, Faculty of Medicine, Mailpoint 113, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.L.C.); (R.J.S.)
| |
Collapse
|
36
|
Verduci E, Mameli C, Amatruda M, Petitti A, Vizzuso S, El Assadi F, Zuccotti G, Alabduljabbar S, Terranegra A. Early Nutrition and Risk of Type 1 Diabetes: The Role of Gut Microbiota. Front Nutr 2021; 7:612377. [PMID: 33425976 PMCID: PMC7785819 DOI: 10.3389/fnut.2020.612377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) appears most frequently in childhood, with an alarming increasing incidence in the last decades. Although the genetic predisposition is a major risk factor, it cannot solely explain the complex etiology of T1D which is still not fully understood. In this paper, we reviewed the most recent findings on the role of early nutrition and the involvement of the gut microbiota in the etiopathogenesis of T1D. The main conclusions that are withdrawn from the current literature regarding alleviating the risk of developing T1D through nutrition are the encouragement of long-term breast-feeding for at least the first 6 months of life and the avoidance of early complementary foods and gluten introduction (before 4 months of age) as well as cow milk introduction before 12 months of life. These detrimental feeding habits create a gut microbiota dysbiotic state that can contribute to the onset of T1D in infancy. Finally, we discussed the possibility to introduce probiotics, prebiotics and post-biotics in the prevention of T1D.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Matilde Amatruda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Agnese Petitti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Vizzuso
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Farah El Assadi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | | | | |
Collapse
|
37
|
Rabe H, Lundell AC, Sjöberg F, Ljung A, Strömbeck A, Gio-Batta M, Maglio C, Nordström I, Andersson K, Nookaew I, Wold AE, Adlerberth I, Rudin A. Neonatal gut colonization by Bifidobacterium is associated with higher childhood cytokine responses. Gut Microbes 2020; 12:1-14. [PMID: 33274676 PMCID: PMC7747801 DOI: 10.1080/19490976.2020.1847628] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota is a major stimulus for the immune system, and late acquisition of bacteria and/or reduced complexity of the gut flora may delay adaptive immune maturation. However, it is unknown how the gut bacterial colonization pattern in human infants is related to T cell activation during early childhood. We followed 65 Swedish children in the FARMFLORA cohort, from birth up to 3 years of age. In fecal samples collected at several time points during the first year of life, the gut colonization pattern was investigated with the use of both 16S rRNA next generation sequencing (NGS) and culture-based techniques. This was related to production of IL-13, IL-5, IL-6, TNF, IL-1β and IFN-γ by PHA-stimulated fresh mononuclear cells and to proportions of CD4+ T cells that expressed CD45RO at 36 months of age. Both NGS and culture-based techniques showed that colonization by Bifidobacterium at 1 week of age associated with higher production of IL-5, IL-6, IL-13, TNF and IL-1β at 36 months of age. By contrast, gut colonization by Enterococcus, Staphylococcus aureus or Clostridium in early infancy related inversely to induced IL-13, IL-5 and TNF at 3 years of age. Infants with elder siblings produced more cytokines and had a larger fraction of CD45RO+ T cells compared to single children. However, controlling for these factors did not abolish the effect of colonization by Bifidobacterium on immune maturation. Thus, gut colonization in early infancy affects T cell maturation and Bifidobacterium may be especially prone to induce infantile immune maturation.
Collapse
Affiliation(s)
- Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,CONTACT Hardis Rabe Institution of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Annika Ljung
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Strömbeck
- Institute of Biomedicine, Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cristina Maglio
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Inger Nordström
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Andersson
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Wang J, Dominguez-Bello MG. Microbial colonization alters neonatal gut metabolome. Nat Microbiol 2020; 5:785-786. [PMID: 32467622 DOI: 10.1038/s41564-020-0734-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA.
| | | |
Collapse
|
39
|
Quin C, Gibson DL. Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. Gut Microbes 2020; 11:1143-1171. [PMID: 32249675 PMCID: PMC7524360 DOI: 10.1080/19490976.2020.1736973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gastrointestinal tract with microorganisms during infancy represents a critical control point for shaping life-long immune-mediated disease susceptibility. Abnormal colonization or an imbalance of microbes, termed dysbiosis, is implicated in several diseases. Consequently, recent research has aimed at understanding ways to manipulate a dysbiotic microbiome during infancy to resemble a normal, healthy microbiome. However, one of the fundamental issues in microbiome research is characterizing what a "normal" infant microbiome is based on geography, ethnicity and cultural variations. This review provides a comprehensive account of what is currently known about the infant microbiome from a global context. In general, this review shows that the influence of cultural variations in feeding practices, delivery modes and hygiene are the biggest contributors to microbial variability. Despite geography or race, all humans have similar microbial succession during infancy.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada,Department of Medicine, University of British Columbia, Kelowna, Canada,CONTACT Deanna L. Gibson Department of Biology, University of British Columbia, Okanagan Campus, ASC 386, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| |
Collapse
|
40
|
Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SYL. Comparing Gut Microbiome in Mothers' Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants. Front Microbiol 2020; 11:891. [PMID: 32528425 PMCID: PMC7264382 DOI: 10.3389/fmicb.2020.00891] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Gut microbiome plays an important role in adult human health and diseases. However, how nutritional factors shape the initial colonization of gut bacteria in infants, especially in preterm infants, is still not completely known. In this study, we compared the effects of feeding with mothers' own breast milk (MBM) and formula on the initial composition and gene expression of gut bacteria in moderate-late preterm infants. Fecal samples were collected from ten formula-fed and ten MBM healthy infants born between 32 and 37 weeks' gestation after they reached full-volume enteral feedings. Total DNAs were extracted from fecal samples for amplicon sequencing of 16S ribosomal RNA (rRNA) gene and total RNA with rRNA depletion for metatranscriptome RNA-Seq 16S rRNA gene amplicon sequencing results showed that the alpha-diversity was similar between the MBM- and formula-fed preterm infants, but the beta-diversity showed a significant difference in composition (p = 0.002). The most abundant taxa were Veillonella (18.4%) and Escherichia/Shigella (15.2%) in MBM infants, whereas the most abundant taxa of formula-fed infants were Streptococcus (18.6%) and Klebsiella (17.4%). The genera Propionibacterium, Streptococcus, and Finegoldia and order Clostridiales had significantly higher relative abundance in the MBM group than the formula group, whereas bacteria under family Enterobacteriaceae, genera Enterococcus and Veillonella, and class Bacilli were more abundant in the formula group. In general, microbiomes from both diet groups exhibited high functional levels of catalytic activity and metabolic processing when analyzed for gene ontology using a comparative metatranscriptome approach. Statistically, the microbial genes in the MBM group had an upregulation in expression related to glycine reductase, periplasmic acid stress response in Enterobacteria, acid resistance mechanisms, and L-fucose utilization. In contrast, the formula-fed group had upregulations in genes associated with methionine and valine degradation functions. Our data suggest that the nutritional source plays a role in shaping the moderate-late preterm gut microbiome as evidenced by the differences in bacterial composition and gene expression profiles in the fecal samples. The MBM group enriched Propionibacterium. Glycine reductase was highly upregulated in the microbiota from MBM along with the upregulated acid stress tolerance genes, suggesting that the intensity of fermentation process was enhanced.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Richard Vo
- Department of Pediatrics, Sanford Children’s Hospital, Sanford USD Medical Center, Sioux Falls, SD, United States
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Jessica White
- Department of Pediatrics, Sanford Children’s Hospital, Sanford USD Medical Center, Sioux Falls, SD, United States
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
41
|
Development and Functions of the Infant Gut Microflora: Western vs. Indian Infants. Int J Pediatr 2020; 2020:7586264. [PMID: 32454840 PMCID: PMC7229554 DOI: 10.1155/2020/7586264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
The human gut is colonized by trillions of bacteria as well as other microorganisms, collectively referred to as the “gut microflora.” This microflora plays an important role in metabolism as well as immunity, and alterations in its normal composition and pattern of colonization can disturb the development and functioning of the immune system, predisposing the individual to several diseases. Neonates acquire their gut microflora from the mother as well as the surroundings, and as the infant grows, the gut microflora undergoes several changes, ultimately acquiring an adult-like composition. Characterization of the gut microflora of healthy infants is important to protect infants from infectious diseases. Furthermore, formulation of prebiotics and probiotics for boosting infant immunity in a specific population also requires prior knowledge of the normal gut microflora in a healthy infant in that population. To this end, several studies have been performed on Western infants; however, the gut microflora of Indian infants is as yet insufficiently studied. Moreover, there has been no comparative analysis of the development and characteristics of the infant gut microflora between the two populations. In this review, we discuss the development and maturation of the infant gut microflora and its effect on immunity, as well as the factors affecting the patterns of colonization. In addition, we compare the patterns of colonization of gut microflora between Western and Indian infants based on the available literature in an attempt to identify the extent of similarity or difference between the two populations.
Collapse
|
42
|
Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020; 12:nu12040892. [PMID: 32218248 PMCID: PMC7230722 DOI: 10.3390/nu12040892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The growing worldwide epidemic of obesity and associated metabolic health comorbidities has resulted in an urgent need for safe and efficient nutritional solutions. The research linking obesity with gut microbiota dysbiosis has led to a hypothesis that certain bacterial strains could serve as probiotics helping in weight management and metabolic health. In the search for such strains, the effect of Bifidobacterium animalis subsp. lactis 420 (B420) on gut microbiota and metabolic health, and the mechanisms of actions, has been investigated in a variety of in vitro, pre-clinical, and clinical studies. In this review, we aim to highlight the research on B420 related to obesity, metabolic health, and the microbiota. Current research supports the hypothesis that gut dysbiosis leads to an imbalance in the inflammatory processes and loss of epithelial integrity. Bacterial components, like endotoxins, that leak out of the gut can invoke low-grade, chronic, and systemic inflammation. This imbalanced state is often referred to as metabolic endotoxemia. Scientific evidence indicates that B420 can slow down many of these detrimental processes via multiple signaling pathways, as supported by mechanistic in vitro and in vivo studies. We discuss the connection of these mechanisms to clinical evidence on the effect of B420 in controlling weight gain in overweight and obese subjects. The research further indicates that B420 may improve the epithelial integrity by rebalancing a dysbiotic state induced by an obesogenic diet, for example by increasing the prevalence of lean phenotype microbes such as Akkermansia muciniphila. We further discuss, in the context of delivering the health benefits of B420: the safety and technological aspects of the strain including genomic characterization, antibiotic resistance profiling, stability in the product, and survival of the live probiotic in the intestine. In summary, we conclude that the clinical and preclinical studies on metabolic health suggest that B420 may be a potential candidate in combating obesity; however, further clinical studies are needed.
Collapse
|
43
|
The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Sci Rep 2020; 10:4270. [PMID: 32144305 PMCID: PMC7060319 DOI: 10.1038/s41598-020-61024-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Several factors affect gut microbiota development in early life, among which breastfeeding plays a key role. We followed 24 mother-infant pairs to investigate the associations between concentrations of selected human milk oligosaccharides (HMOs) in breastmilk, infant faeces, and the faecal microbiota composition in healthy, breastfed infants at two, six and 12 weeks of age. Lactation duration had a significant effect on breastmilk HMO content, which decreased with time, except for 3-fucosyllactose (3FL) and Lacto-N-fucopentaose III (LNFP III). We confirmed that microbiota composition was strongly influenced by infant age and was associated with mode of delivery and breastmilk LNFP III concentration at two weeks, with infant sex, delivery mode, and concentrations of 3′sialyllactose (3′SL) in milk at six weeks, and infant sex and Lacto-N-hexaose (LNH) in milk at 12 weeks of age. Correlations between levels of individual breastmilk HMOs and relative abundance of OTUs found in infant faeces, including the most predominant Bifidobacterium OTUs, were weak and varied with age. The faecal concentration of HMOs decreased with age and were strongly and negatively correlated with relative abundance of OTUs within genera Bifidobacterium, Parabacteroides, Escherichia-Shigella, Bacteroides, Actinomyces, Veillonella, Lachnospiraceae Incertae Sedis, and Erysipelotrichaceae Incertae Sedis, indicating the likely importance of these taxa for HMO metabolism in vivo.
Collapse
|
44
|
Shaw AG, Cornwell E, Sim K, Thrower H, Scott H, Brown JCS, Dixon RA, Kroll JS. Dynamics of toxigenic Clostridium perfringens colonisation in a cohort of prematurely born neonatal infants. BMC Pediatr 2020; 20:75. [PMID: 32070310 PMCID: PMC7027286 DOI: 10.1186/s12887-020-1976-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
Background Clostridium perfringens forms part of the human gut microbiota and has been associated with life-threatening necrotising enterocolitis (NEC) in premature infants. Whether specific toxigenic strains are responsible is unknown, as is the extent of diversity of strains in healthy premature babies. We investigated the C. perfringens carrier status of premature infants in the neonatal intensive care unit, factors influence this status, and the toxic potential of the strains. Methods C. perfringens was isolated by culture from faecal samples from 333 infants and their toxin gene profiles analysed by PCR. A survival analysis was used to identify factors affecting probability of carriage. Competitive growth experiments were used to explore the results of the survival analysis. Results 29.4% of infants were colonized with C. perfringens before they left hospital. Three factors were inversely associated with probability of carriage: increased duration of maternal milk feeds, CPAP oxygen treatment and antibiotic treatment. C. perfringens grew poorly in breast milk and was significantly outperformed by Bifidobacterium infantis, whether grown together or separately. Toxin gene screening revealed that infants carried isolates positive for collagenase, perfringolysin O, beta 2, beta, becA/B, netB and enterotoxin toxin genes, yet none were observed to be associated with the development of NEC. Conclusions Approximately a third of preterm infants are colonised 3 weeks after birth with toxin gene-carrying C. perfringens. We speculate that increased maternal breast milk, oxygen and antibiotic treatment creates an environment in the gut hostile to growth of C. perfringens. Whilst potentially toxigenic C. perfringens isolates were frequent, no toxin type was associated with NEC. Trial registration clinicaltrials.govNCT01102738, registered 13th April 2010.
Collapse
Affiliation(s)
- Alexander G Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Emma Cornwell
- Department of Medicine, Section of Paediatrics, Imperial College London, London, UK
| | - Kathleen Sim
- Department of Medicine, Section of Paediatrics, Imperial College London, London, UK
| | - Hannah Thrower
- Department of Medicine, Section of Paediatrics, Imperial College London, London, UK
| | - Hannah Scott
- Department of Medicine, Section of Paediatrics, Imperial College London, London, UK
| | | | - Ronald A Dixon
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - J Simon Kroll
- Department of Medicine, Section of Paediatrics, Imperial College London, London, UK
| |
Collapse
|
45
|
Westreich ST, Salcedo J, Durbin-Johnson B, Smilowitz JT, Korf I, Mills DA, Barile D, Lemay DG. Fecal metatranscriptomics and glycomics suggest that bovine milk oligosaccharides are fully utilized by healthy adults. J Nutr Biochem 2020; 79:108340. [PMID: 32028108 DOI: 10.1016/j.jnutbio.2020.108340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Human milk oligosaccharides play a vital role in the development of the gut microbiome in the human infant. Although oligosaccharides derived from bovine milk (BMO) differ in content and profile with those derived from human milk (HMO), several oligosaccharide structures are shared between the species. BMO are commercial alternatives to HMO, but their fate in the digestive tract of healthy adult consumers is unknown. Healthy human subjects consumed two BMO doses over 11-day periods each and provided fecal samples. Metatranscriptomics of fecal samples were conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbial gene expression across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial gene expression. No significant change was observed in the gene expression of host cells exfoliated in stool. Levels of BMO excreted in feces after supplementation were not significantly different from baseline and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO are fully fermented in the human gastrointestinal tract upstream of the distal colon. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient. Further research is needed to investigate potential health benefits of this completely fermentable prebiotic that naturally occurs in cow's milk.
Collapse
Affiliation(s)
- Samuel T Westreich
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States; Genome Center, University of California-Davis, Davis, California, United States.
| | - Jaime Salcedo
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States.
| | | | - Jennifer T Smilowitz
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Ian Korf
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California, United States; Genome Center, University of California-Davis, Davis, California, United States.
| | - David A Mills
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States.
| | - Danielle G Lemay
- Genome Center, University of California-Davis, Davis, California, United States; Foods for Health Institute, University of California, Davis, California, United States; USDA ARS Western Human Nutrition Research Center, Davis, California, United States.
| |
Collapse
|
46
|
Dore MP, Bibbò S, Fresi G, Bassotti G, Pes GM. Side Effects Associated with Probiotic Use in Adult Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:2913. [PMID: 31810233 PMCID: PMC6950558 DOI: 10.3390/nu11122913] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Probiotics demonstrated to be effective in the treatment of inflammatory bowel disease (IBD). However, the safety profile of probiotics is insufficiently explored. In the present systematic review and meta-analysis, we examined the occurrence of side effects related to probiotic/synbiotic use in randomized controlled trials (RCTs) of IBD patients as compared with placebo. Eligible RCTs in adult patients with IBD were identified by accessing the Medline database via PubMed, EMBASE, CENTRAL and the Cochrane central register of controlled trials up to December 2018. Occurrence of side effects was retrieved and recorded. Data were pooled and the relative risks (RRs) with their 95% confidence intervals (CIs) were calculated. The low-moderate study heterogeneity, assessed by the I2 statistic, allowed to use of a fixed-effects modelling for meta-analysis. Nine RCTs among 2337, including 826 patients (442 treated with probiotics/symbiotic and 384 with placebo) were analyzed. Eight were double-blind RCTs, and six enrolled ulcerative colitis (UC) patients. Although the risk for the overall side effects (RR 1.35, 95%CI 0.93-1.94; I2 = 25%) and for gastrointestinal symptoms (RR 1.78, 95%CI 0.99-3.20; I2 = 20%) was higher in IBD patients taking probiotics than in those exposed to placebo, statistical significance was achieved only for abdominal pain (RR 2.59, 95%CI 1.28-5.22; I2 = 40%). In conclusion, despite the small number of RCTs and the variety of probiotic used and schedule across studies, these findings highlight the level of research effort still required to identify the most appropriate use of probiotics in IBD.
Collapse
Affiliation(s)
- Maria Pina Dore
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano Bibbò
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| | - Gianni Fresi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| |
Collapse
|
47
|
Rocha Martin VN, Schwab C, Krych L, Voney E, Geirnaert A, Braegger C, Lacroix C. Colonization of Cutibacterium avidum during infant gut microbiota establishment. FEMS Microbiol Ecol 2019; 95:5154911. [PMID: 30388209 DOI: 10.1093/femsec/fiy215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
Abstract
Establishment of the infant gut microbiota affects gut maturation and influences long-term health. Cutibacterium (formerly Propionibacterium) have been identified as early colonizers, but little is known about their function. Using a cultivation-dependent and -independent approach, we determined Cutibacterium prevalence, diversity and functional potential. In feces from a Swiss infant cohort (n = 38), prevalence of Propionibacterium/Cutibacterium decreased from 84% at 2 weeks, to 65% at 4 weeks, 47% at 8 weeks and 41% at 12 weeks of age. Abundance varied among individuals, and persistence depended on the colonization levels at 2 weeks. Cutibacterium isolates (n = 87) were obtained from 10 infants from a smaller cohort (n = 12); restriction fragment length polymorphism clustered isolates in four groups, and all identified as Cutibacterium avidum. Colonization potential and metabolic effects of C. avidum addition were tested in an in vitro continuous intestinal fermentation model mimicking infant proximal colon conditions. Cutibacterium avidum spiked daily at 108 or 109 cells mL-1 colonized, decreased formate and persisted during the washout period. Significant correlations were observed between Propionibacterium/Cutibacterium and lactate-producers and protein-degraders in both reactors and infant feces. Our findings highlight the natural presence of C. avidum and its role as a lactate-consumer and propionate-producer in infants younger than 3 months.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen 1958, Denmark
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
48
|
Van den Abbeele P, Duysburgh C, Vazquez E, Chow J, Buck R, Marzorati M. 2′-Fucosyllactose alters the composition and activity of gut microbiota from formula-fed infants receiving complementary feeding in a validated intestinal model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103484] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Jayakumar S, Loomba R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment Pharmacol Ther 2019; 50:144-158. [PMID: 31149745 PMCID: PMC6771496 DOI: 10.1111/apt.15314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent disorder associated with obesity and diabetes. Few treatment options are effective for patients with NAFLD, but connections between the gut microbiome and NAFLD and NAFLD-associated conditions suggest that modulation of the gut microbiota could be a novel therapeutic option. AIM To examine the effect of the gut microbiota on pathophysiologic causes of NAFLD and assess the potential of microbiota-targeting therapies for NAFLD. METHODS A PubMed search of the literature was performed; relevant articles were included. RESULTS The composition of bacteria in the gastrointestinal tract can enhance fat deposition, modulate energy metabolism and alter inflammatory processes. Emerging evidence suggests a role for the gut microbiome in obesity and metabolic syndrome. NAFLD is often considered the hepatic manifestation of metabolic syndrome, and there has been tremendous progress in understanding the association of gut microbiome composition with NAFLD disease severity. We discuss the role of the gut microbiome in NAFLD pathophysiology and whether the microbiome composition can differentiate the two categories of NAFLD: nonalcoholic fatty liver (NAFL, the non-progressive form) vs nonalcoholic steatohepatitis (NASH, the progressive form). The association between gut microbiome and fibrosis progression in NAFLD is also discussed. Finally, we review whether modulation of the gut microbiome plays a role in improving treatment outcomes for patients with NAFLD. CONCLUSIONS Multiple pathophysiologic pathways connect the gut microbiome with the pathophysiology of NAFLD. Therefore, therapeutics that effectively target the gut microbiome may be beneficial for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Saumya Jayakumar
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of MedicineNAFLD Research Center, University of California at San DiegoLa JollaCalifornia,Division of Epidemiology, Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCalifornia
| |
Collapse
|
50
|
Bernstein CN, Burchill C, Targownik LE, Singh H, Roos LL. Events Within the First Year of Life, but Not the Neonatal Period, Affect Risk for Later Development of Inflammatory Bowel Diseases. Gastroenterology 2019; 156:2190-2197.e10. [PMID: 30772341 PMCID: PMC7094443 DOI: 10.1053/j.gastro.2019.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS We performed a population-based study to determine whether there was an increased risk of inflammatory bowel diseases (IBD) in persons with critical events at birth and within 1 year of age. METHODS We collected data from the University of Manitoba IBD Epidemiology Database, which contains records on all Manitobans diagnosed with IBD from 1984 through 2010 and matched controls. From 1970 individuals' records can be linked with those of their mothers, so we were able to identify siblings. All health care visits or hospitalizations during the neonatal and postnatal periods were available from 1970 through 2010. We collected data on infections, gastrointestinal illnesses, failure to thrive, and hospital readmission in the first year of life and sociodemographic factors at birth. From 1979, data were available on gestational age, Apgar score, neonatal admission to the intensive care unit, and birth weight. We compared incident rate of infections, gastrointestinal illnesses, and failure to thrive between IBD cases and matched controls as well as between IBD cases and siblings. RESULTS Data on 825 IBD cases and 5999 matched controls were available from 1979. Maternal diagnosis of IBD was the greatest risk factor for IBD in offspring (odds ratio [OR], 4.53; 95% confidence interval [CI], 3.08-6.67). When we assessed neonatal events, only being in the highest vs lowest socioeconomic quintile increased risk for later development of IBD (OR, 1.35; 95% CI, 1.01-1.79). For events within the first year of life, being in the highest socioeconomic quintile at birth and infections (OR, 1.39; 95% CI, 1.09-1.79) increased risk for developing IBD at any age. Infection in the first year of life was associated with diagnosis of IBD before age 10 years (OR, 3.06; 95% CI, 1.07-8.78) and before age 20 years (OR, 1.63; 95% CI, 1.18-2.24). Risk for IBD was not affected by gastrointestinal infections, gastrointestinal disease, or abdominal pain in the first year of life. CONCLUSIONS In a population-based study, we found infection within the first year of life to be associated with a diagnosis of IBD. This might be due to use of antibiotics or a physiologic defect at a critical age for gut microbiome development.
Collapse
Affiliation(s)
- Charles N. Bernstein
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Reprint requests Address requests for reprints to: Charles N. Bernstein, MD, University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, 804F-715 McDermot Avenue, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada. fax: (204) 789-3972.
| | - Charles Burchill
- Manitoba Centre for Health Policy, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Laura E. Targownik
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Harminder Singh
- University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Leslie L. Roos
- Manitoba Centre for Health Policy, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada,Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|