1
|
Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021; 9:microorganisms9020343. [PMID: 33572303 PMCID: PMC7916105 DOI: 10.3390/microorganisms9020343] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
For the prevention of infectious diseases, knowledge about transmission routes is essential. In addition to respiratory, fecal-oral, and sexual transmission, the transfer of pathogens via surfaces plays a vital role for human pathogenic infections-especially nosocomial pathogens. Therefore, information about the survival of pathogens on surfaces can have direct implications on clinical measures, including hygiene guidelines and disinfection strategies. In this review, we reviewed the existing literature regarding viral, bacterial, and fungal persistence on inanimate surfaces. In particular, the current knowledge of the survival time and conditions of clinically relevant pathogens is summarized. While many pathogens persist only for hours, common nosocomial pathogens can survive for days to weeks under laboratory conditions and thereby potentially form a continuous source of transmission if no adequate inactivation procedures are performed.
Collapse
|
2
|
Parveen A, Yalagatti MS, Abbaraju V, Deshpande R. Emphasized Mechanistic Antimicrobial Study of Biofunctionalized Silver Nanoparticles on Model Proteus mirabilis. JOURNAL OF DRUG DELIVERY 2018; 2018:3850139. [PMID: 29951316 PMCID: PMC5987338 DOI: 10.1155/2018/3850139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/16/2018] [Accepted: 04/15/2018] [Indexed: 12/16/2022]
Abstract
Antimicrobial study of biofunctionalized silver nanoparticles has been done with the emphasis on its mechanism on both gram positive and negative bacteria. The biofunctionalized silver nanoparticles are employed considering their importance in green chemistry with respect to easy synthesis, usefulness, and economic synthetic procedure involved. The stability of these nanoparticles was determined by zeta potential analyzer. The probable mechanism of antibacterial activity was performed on Proteus mirabilis by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDAX) study which does not show the presence of silver. The free radicals generated by silver nanoparticles were responsible for lethal antibacterial activity by rupturing the cell surface which causes improper nutrient and signal supply. Free radical scavenging efficacy of silver nanoparticles was confirmed by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) method. AgNP enhanced the membrane leakage of reducing sugars by destroying the proteins existing on the cell wall. These nanoparticles are found to be toxic against human pathogens and are highly effective on Staphylococcus aureus. The effect of silver nanoparticles is concentration dependent and independent of the type of strains used.
Collapse
Affiliation(s)
- Asra Parveen
- H.K.E.S's Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Gulbarga 585105, Karnataka, India
| | | | - Venkataraman Abbaraju
- Materials Chemistry Laboratory, Department of Material Science, Gulbarga University, Gulbarga 585106, Karnataka, India
| | - Raghunandan Deshpande
- H.K.E.S's Matoshree Taradevi Rampure Institute of Pharmaceutical Sciences, Gulbarga 585105, Karnataka, India
| |
Collapse
|
3
|
Cao J, Li M, Xu C, Zhou T, Du J, Sun Y, Qin L, Xu J. Characterization of Integrons and qnr Genes in Proteeae from a Teaching Hospital in China. Chemotherapy 2016; 62:12-18. [PMID: 27220322 DOI: 10.1159/000445426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Proteeae isolates displaying multidrug-resistance (MDR) are the second most common causes of hospital-associated infections. The aim of this study was to screen class 1-3 integrons and plasmid-mediated quinolone resistance (PMQR) genes in Proteeae isolates from the First Affiliated Hospital of the Wenzhou Medical University. MATERIALS AND METHODS 176 Proteeae isolates were collected from clinical specimens of inpatients between January 2011 and December 2013. Susceptibility testing was determined by the agar dilution method. Class 1-3 integrons and PMQR genes were amplified by polymerase chain reaction, and the variable regions of integrons were determined by restriction fragment length polymorphisms. RESULTS 68.2% Proteeae isolates exhibited MDR phenotypes: 46.6 and 10.8% Proteeae isolates were positive for intI1 and intI2, respectively. The resistance rate of integron-positive isolates to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole was significantly higher than integron-negative isolates. Sequence analysis revealed that dfrA1-sat2-aadA1, dfrA1-catB2-sat2-aadA1, and sat2-aadA1 were first detected in Morganella morganii strains isolated from China. PMQR was determined by qnrD in 40 strains (22.7%). CONCLUSION Our results indicate that class 1 and 2 integrons are common among Proteeae isolates. Meanwhile, qnrD are highly prevalent in Proteeae isolated from our hospital.
Collapse
Affiliation(s)
- Jianming Cao
- Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:526-37. [PMID: 26523409 DOI: 10.1016/j.bbamem.2015.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
5
|
Irwin N, McCoy C, Carson L. Effect of pH on the in vitro
susceptibility of planktonic and biofilm-grown Proteus mirabilis
to the quinolone antimicrobials. J Appl Microbiol 2013; 115:382-9. [DOI: 10.1111/jam.12241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Affiliation(s)
- N.J. Irwin
- School of Pharmacy; Queen's University Belfast; Belfast UK
| | - C.P. McCoy
- School of Pharmacy; Queen's University Belfast; Belfast UK
| | - L. Carson
- School of Pharmacy; Queen's University Belfast; Belfast UK
| |
Collapse
|
6
|
Abstract
The disA gene encodes a putative amino acid decarboxylase that inhibits swarming in Proteus mirabilis. 5' rapid amplification of cDNA ends (RACE) and deletion analysis were used to identify the disA promoter. The use of a disA-lacZ fusion indicated that FlhD(4)C(2), the class I flagellar master regulator, did not have a role in disA regulation. The putative product of DisA, phenethylamine, was able to inhibit disA expression, indicating that a negative regulatory feedback loop was present. Transposon mutagenesis was used to identify regulators of disA and revealed that umoB (igaA) was a negative regulator of disA. Our data demonstrate that the regulation of disA by UmoB is mediated through the Rcs phosphorelay.
Collapse
|
7
|
Loss of the waaL O-antigen ligase prevents surface activation of the flagellar gene cascade in Proteus mirabilis. J Bacteriol 2010; 192:3213-21. [PMID: 20382766 DOI: 10.1128/jb.00196-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium that undergoes a physical and biochemical change from a vegetative swimmer cell (a typical Gram-negative rod) to an elongated swarmer cell when grown on a solid surface. In this study, we report that a transposon insertion in the waaL gene, encoding O-antigen ligase, blocked swarming motility on solid surfaces but had little effect on swimming motility in soft agar. The waaL mutant was unable to differentiate into a swarmer cell. Differentiation was also prevented by a mutation in wzz, encoding a chain length determinant for O antigen, but not by a mutation in wzyE, encoding an enzyme that polymerizes enterobacterial common antigen, a surface polysaccharide different from the lipid A::core. In wild-type P. mirabilis, increased expression of the flhDC operon occurs after growth on solid surfaces and is required for the high-level expression of flagellin that is characteristic of swarmer cells. However, in both the waaL and the wzz mutants, the flhDC operon was not activated during growth on agar. A loss-of-function mutation in the rcsB response regulator or overexpression of flhDC restored swarming to the waaL mutant, despite the absence of O antigen. Therefore, although O antigen may serve a role in swarming by promoting wettability, the loss of O antigen blocks a regulatory pathway that links surface contact with the upregulation of flhDC expression.
Collapse
|
8
|
Echeverrigaray S, Michelim L, Delamare APL, Andrade CP, da Costa SOP, Zacaria J. The effect of monoterpenes on swarming differentiation and haemolysin activity in Proteus mirabilis. Molecules 2008; 13:3107-16. [PMID: 19078852 PMCID: PMC6244942 DOI: 10.3390/molecules13123107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/19/2008] [Accepted: 11/27/2008] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infection by Proteus mirabilis depends on several virulence properties that are coordinately regulated with swarming differentiation. Here we report the antibacterial and anti-swarming effect of seventeen terpenoids, and the effect of subinhibitory concentrations of five selected terpenoids on swarming, biofilm formation and haemolysin activity. The results showed that all the terpenes evaluated, particularly oxygenated terpenoids, inhibited P. mirabilis with MIC values ranging between 3 and 10 mg/L. Moreover, citral, citronellol and geraniol effectively inhibit P. mirabilis swarming in a dose dependent manner, reducing swimming/swarming cell differentiation and haemolysin activity at 1/10 MIC concentration. The inhibition of P. mirabilis swarming and virulence factor expression by selected oxygenated terpenoids suggest that essential oils with high concentration of these compounds have the potential to be developed as products for preventing P. mirabilis infections.
Collapse
Affiliation(s)
- Sergio Echeverrigaray
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55 54 32182149; Fax: +55 54 32182149
| | - Lessandra Michelim
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
- Division of Infectious Diseases. General Hospital of Caxias do Sul, University of Caxias do Sul, Av. Prof Antonio Vignolli, 255, Caxias do Sul, Brazil95070-560; (L. M.)
| | - Ana Paula Longaray Delamare
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
| | - Cristiane Paim Andrade
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
| | - Sérgio Olavo Pinto da Costa
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
| | - Jucimar Zacaria
- Research Laboratory of Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, Brazil 95070-560
| |
Collapse
|
9
|
ZapA, a virulence factor in a rat model of Proteus mirabilis-induced acute and chronic prostatitis. Infect Immun 2008; 76:4859-64. [PMID: 18725420 DOI: 10.1128/iai.00122-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of pathogenesis has benefited from a better understanding of the roles of specific virulence factors in disease. To determine the role of the virulence factor ZapA, a 54-kDa metalloproteinase of Proteus mirabilis, in prostatitis, rats were infected with either wild-type (WT) P. mirabilis or its isogenic ZapA(-) mutant KW360. The WT produced both acute and chronic prostatitis showing the typical histological progressions that are the hallmarks of these diseases. Infection with the ZapA(-) mutant, however, resulted in reduced levels of acute prostatitis, as determined from lower levels of tissue damage, bacterial colonization, and inflammation. Further, the ZapA(-) mutant failed to establish a chronic infection, in that bacteria were cleared from the prostate, inflammation was resolved, and tissue was seen to be healing. Clearance from the prostate was not the result of a reduced capacity of the ZapA(-) mutant to form biofilms in vitro. These finding clearly define ZapA as an important virulence factor in both acute and chronic bacterial prostatitis.
Collapse
|
10
|
Pearson MM, Mobley HLT. The type III secretion system of Proteus mirabilis HI4320 does not contribute to virulence in the mouse model of ascending urinary tract infection. J Med Microbiol 2007; 56:1277-1283. [PMID: 17893161 DOI: 10.1099/jmm.0.47314-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections (UTIs) in individuals with long-term indwelling catheters or with complicated urinary tracts. The recent release of the P. mirabilis strain HI4320 genome sequence has facilitated identification of potential virulence factors in this organism. Genes appearing to encode a type III secretion system (TTSS) were found in a low GC-content pathogenicity island in the P. mirabilis chromosome. This island contains 24 intact genes that appear to encode all components necessary to assemble a TTSS needle complex, plus at least two putative secreted effector proteins and their chaperones. The genetic organization of the TTSS genes is very similar to that of the TTSS of Shigella flexneri. RT-PCR analysis indicated that these genes are expressed at low levels in vitro. However, insertional mutation of two putative TTSS genes, encoding the requisite ATPase and a possible negative regulator, resulted in no change in either the growth rate of the mutant or the secreted protein profile compared to wild-type. Furthermore, there was no difference in quantitative cultures of urine, bladder and kidney between the ATPase mutant and the wild-type strain in the mouse model of ascending UTI in either independent challenge or co-challenge experiments. The role of the P. mirabilis TTSS, if any, is yet to be determined.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| |
Collapse
|
11
|
Li X, Lockatell CV, Johnson DE, Lane MC, Warren JW, Mobley HLT. Development of an intranasal vaccine to prevent urinary tract infection by Proteus mirabilis. Infect Immun 2004; 72:66-75. [PMID: 14688082 PMCID: PMC343968 DOI: 10.1128/iai.72.1.66-75.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 09/03/2003] [Accepted: 09/17/2003] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis commonly infects the complicated urinary tract and is associated with urolithiasis. Stone formation is caused by bacterial urease, which hydrolyzes urea to ammonia, causing local pH to rise, and leads to the subsequent precipitation of magnesium ammonium phosphate (struvite) and calcium phosphate (apatite) crystals. To prevent these infections, we vaccinated CBA mice with formalin-killed bacteria or purified mannose-resistant, Proteus-like (MR/P) fimbriae, a surface antigen expressed by P. mirabilis during experimental urinary tract infection, via four routes of immunization: subcutaneous, intranasal, transurethral, and oral. We assessed the efficacy of vaccination using the CBA mouse model of ascending urinary tract infection. Subcutaneous or intranasal immunization with formalin-killed bacteria and intranasal or transurethral immunization with purified MR/P fimbriae significantly protected CBA mice from ascending urinary tract infection by P. mirabilis (P < 0.05). To investigate the potential of MrpH, the MR/P fimbrial tip adhesin, as a vaccine, the mature MrpH peptide (residues 23 to 275, excluding the signal peptide), and the N-terminal receptor-binding domain of MrpH (residues 23 to 157) were overexpressed as C-terminal fusions to maltose-binding protein (MBP) and purified on amylose resins. Intranasal immunization of CBA mice with MBP-MrpH (residues 23 to 157) conferred effective protection against urinary tract infection by P. mirabilis (P < 0.002).
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
12
|
Johnson DE, Bahrani FK, Lockatell CV, Drachenberg CB, Hebel JR, Belas R, Warren JW, Mobley HL. Serum immunoglobulin response and protection from homologous challenge by Proteus mirabilis in a mouse model of ascending urinary tract infection. Infect Immun 1999; 67:6683-7. [PMID: 10569791 PMCID: PMC97083 DOI: 10.1128/iai.67.12.6683-6687.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested the hypothesis that experimental Proteus mirabilis urinary tract infection in mice would protect against homologous bladder rechallenge. Despite production of serum immunoglobulin G (IgG) and IgM (median titers of 1:320 and 1:80, respectively), vaccinated (infected and antibiotic-cured) mice did not show a decrease in mortality upon rechallenge; the survivors experienced only modest protection from infection (mean log(10) number of CFU of P. mirabilis Nal(r) HI4320 per milliliter or gram in vaccinated mice versus sham-vaccinated mice: urine, 100-fold less [3.5 versus 5.5; P = 0.13]; bladder, 100-fold less [3.1 versus 5.1; P = 0.066]; kidneys, 40-fold less [2.7 versus 4.3; P = 0.016]). Western blots using protein from the wild-type strain and isogenic mutants demonstrated antibody responses to MR/P and PMF fimbriae and flagella. There was no correlation between serum IgG or IgM levels and protection from mortality or infection. There was a trend toward elevated serum IgA titers and protection from subsequent challenge (P >/= 0.09), although only a few mice developed significant serum IgA levels. We conclude that prior infection with P. mirabilis does not protect significantly against homologous challenge.
Collapse
Affiliation(s)
- D E Johnson
- Research Service, VA Medical Center, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 1999; 32:825-36. [PMID: 10361285 DOI: 10.1046/j.1365-2958.1999.01401.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The IgA-degrading metalloprotease, ZapA, of the urinary tract pathogen Proteus mirabilis is co-ordinately expressed along with other proteins and virulence factors during swarmer cell differentiation. In this communication, we have used zapA to monitor IgA protease expression during the differentiation of vegetative swimmer cells to fully differentiated swarmer cells. Northern blot analysis of wild-type cells and beta-galactosidase measurements using a zapA:lacZ fusion strain indicate that zapA is fully expressed only in differentiated swarmer cells. Moreover, the expression of zapA on nutrient agar medium is co-ordinately regulated in concert with the cycles of cellular differentiation, swarm migration and consolidation that produce the bull's-eye colonies typically associated with P. mirabilis. ZapA activity is not required for swarmer cell differentiation or swarming behaviour, as ZapA- strains produce wild-type colony patterns. ZapA- strains fail to degrade IgA and show decreased survival compared with the wild-type cells during infection in a mouse model of ascending urinary tract infection (UTI). These data underscore the importance of the P. mirabilis IgA-degrading metalloprotease in UTI. Analysis of the nucleotide sequences adjacent to zapA reveals four additional genes, zapE, zapB, zapC and zapD, which appear to possess functions required for ZapA activity and IgA proteolysis. Based on homology to other known proteins, these genes encode a second metalloprotease, ZapE, as well as a ZapA-specific ABC transporter system (ZapB, ZapC and ZapD). A model describing the function and interaction of each of these five proteins in the degradation of host IgA during UTI is presented.
Collapse
Affiliation(s)
- K E Walker
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Suite 236 Columbus Center, 701 E. Pratt Street, Baltimore, MD 21202 USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Molecular analyses have revealed that Proteus mirabilis possesses two genes, flaA and flaB, that are homologous to each other and to flagellin genes of many other species. Both swimmer and swarmer cells transcribe flaA, but not flaB. FlaA- mutants are non-motile and do not differentiate showing the essential role of flaA in swarmer cell differentiation and behaviour. At a low frequency, motile, differentiation-proficient revertants have been found in FlaA-populations. These revertants produce an antigenically and biochemically distinct flagellin protein. The revertant flagellin is the result of a genetic fusion between highly homologous regions of flaA and flaB that places the active flaA promoter and the 5' coding region of flaA adjacent to previously silent regions of flaB generating a hybrid flagellin protein. Analysis of the flaA-flaB region of two such revertants reveals that a portion of this locus has undergone a rearrangement and deletion event that is unique to each revertant. Using a polymerase chain reaction (PCR) to amplify the falA-flaB locus from wild-type swimmer cells, swarmer cells and cells obtained after urinary tract infection, we uncover at least six general classes of rearrangements between flaA and flaB. Each class of rearrangement occurs within one of nine domains of homology between flaA and flaB. Rearrangement of flaA and flaB results in a hybrid flagellin protein of nearly identical size and biochemical properties, suggesting a concerted mechanism may be involved in this process. The data also reveal that the frequency and distribution of flaAB rearrangements is predicted on environmental conditions. Thus, rearrangement between flaA and flaB may be a significant virulence component of P. mirabilis in urinary tract infections.
Collapse
Affiliation(s)
- C A Murphy
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202, USA
| | | |
Collapse
|
15
|
Tessier F, Arpin C, Allery A, Quentin C. Molecular characterization of a TEM-21 beta-lactamase in a clinical isolate of Morganella morganii. Antimicrob Agents Chemother 1998; 42:2125-7. [PMID: 9687421 PMCID: PMC105882 DOI: 10.1128/aac.42.8.2125] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A clinical isolate of Morganella morganii, with reduced susceptibility to expanded-spectrum cephalosporins and aztreonam, was found to produce an extended-spectrum beta-lactamase with a pI of 6.4. The nucleotide sequence of the encoding gene was that of the gene encoding TEM-21. This is the first molecular characterization of an extended-spectrum beta-lactamase in M. morganii.
Collapse
Affiliation(s)
- F Tessier
- Laboratoire de Microbiologie, Université de Bordeaux 2, Bordeaux, France.
| | | | | | | |
Collapse
|
16
|
Abstract
The urease gene cluster from the virulent Actinobacillus pleuropneumoniae serotype 1 strain CM5 was cloned and sequenced. The urease activity was associated with a 6.3-kbp region which contains eight long open reading frames (ORFs). The structural genes, ureABC, are separated from the accessory genes, ureEFGD, by a 615-bp ORF of unknown function, ureX. Homologies were found with the structural and accessory urease gene products of Haemophilus influenzae and, to a lesser extent, with those of other organisms. The urease enzyme subunits had predicted molecular masses of 61.0, 11.3, and 11.0 kDa, and the size of the holoenzyme was estimated to be 337 +/- 13 kDa by gel filtration chromatography. Urease activity was maximal but unstable at 65 degrees C. In cell lysates, the A. pleuropneumoniae urease was stable over a broad pH range (5.0 to 10.6) and the optimal pH for activity was 7.7. The Km was 1.5 +/- 0.1 mM urea when it was assayed at pH 7.7. The low Km suggests that this enzyme would be active in the respiratory tract environment, where urea levels should be similar to those normally found in pig serum (2 to 7 mM).
Collapse
Affiliation(s)
- J T Bossé
- Department of Pathobiology, University of Guelph, Ontario, Canada.
| | | |
Collapse
|
17
|
Abstract
Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.
Collapse
Affiliation(s)
- H L Mobley
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
18
|
Benz R, Hardie KR, Hughes C. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:339-47. [PMID: 7510229 DOI: 10.1111/j.1432-1033.1994.tb18630.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipid-bilayer experiments were performed with the related hemolysins from Proteus vulgaris and Morganella morganii (HlyA). The addition of the toxins to the aqueous phase bathing lipid-bilayer membranes composed of different lipids resulted in the formation of transient ion-permeable channels. Membranes formed of pure lipids were rather inactive targets for the hemolysins as compared with lipid mixtures such as asolectin. The channels had several different substrates. The major open state had single-channel conductances of 500 pS in 0.15 M KCl at small transmembrane voltages. Experiments with different salts suggested that the hemolysin-induced channels of P. vulgaris and M. morganii were exclusively cation selective at neutral pH, caused by negative charges localized at the channel mouth. The mobility sequence of the cations within the channels was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with wide, water-filled channels with estimated minimal diameters of about 1 nm since the large organic cation Tris+ can permeate the channels without any detectable interaction with its interior. Pore-forming properties of these hemolysins were compared with those of HlyA of Escherichia coli. All these toxins share common features, oligomerize probably to form pores in lipid-bilayer membranes and form channels with similar properties which suggests that their structures are more or less identical.
Collapse
Affiliation(s)
- R Benz
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum), Universität Würzburg, Germany
| | | | | |
Collapse
|
19
|
Abstract
The nickel metalloenzyme urease catalyses the hydrolysis of urea to ammonia and carbamate, and thus generates the preferred nitrogen source of many organisms. When produced by bacterial pathogens in either the urinary tract or the gastroduodenal region, urease acts as a virulence factor. At both sites of infection urease is known to enhance the survival of the infecting bacteria. Ammonia resulting from the action of urease is believed to increase the pH of the environment to one more favourable for growth, and to injure the surrounding epithelial cells. In addition, in the urinary tract urease activity can result in the formation of urinary calculi. Bacterial urease gene clusters contain from seven to nine genes depending upon the species. These genes encode the urease structural subunits and accessory polypeptides involved in the biosynthesis of the nickel metallocentre. So far, three distinct mechanisms of urease gene expression have been described for ureolytic bacteria. Some species constitutively produce urease; some species produce urease only if urea is present in the growth medium; and some species produce urease only during nitrogen-limiting growth conditions. For either the urea-inducible genes or the nitrogen-regulated genes transcription appears to be positively regulated. In the nitrogen-regulated systems, urease gene expression requires Nac (nitrogen assimilation control), a member of the LysR family of transcriptional activators. Urea dependent expression of urease requires UreR (urease regulator), a member of the AraC family of transcriptional activators. An evolutionary tree for urease genes of eight bacterial species is proposed.
Collapse
Affiliation(s)
- C M Collins
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
20
|
Hamilton-Miller JM. Continuing the search for bacterial urovirulence factors. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1993; 279:147-53. [PMID: 8219486 DOI: 10.1016/s0934-8840(11)80391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteria that commonly cause infections of the normal urinary tract (eg Escherichia coli, Proteus mirabilis and Staphylococcus saprophyticus) do so because they possess specific urovirulence factors. Adhesions of various types (often fimbriae) seem to be the most important of these. In E. coli several other factors have been recognized, and sub-sets of defined uropathogenic clones exist. On the other hand, urovirulence determinants are less easy to distinguish in species such as S. epidermidis and Klebsiella pneumoniae, that rarely cause such infections, or are pathogenic only in the presence of some abnormality or deficiency in host defences.
Collapse
|
21
|
Loomes LM, Senior BW, Kerr MA. Proteinases of Proteus spp.: purification, properties, and detection in urine of infected patients. Infect Immun 1992; 60:2267-73. [PMID: 1587593 PMCID: PMC257153 DOI: 10.1128/iai.60.6.2267-2273.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteinases secreted by pathogenic strains of Proteus mirabilis, P. vulgaris biotype 2, P. vulgaris biotype 3, and P. penneri were purified with almost 100% recovery by affinity chromatography on phenyl-Sepharose followed by anion-exchange chromatography. The proteinase purified from the urinary tract pathogen P. mirabilis, which we had previously shown to degrade immunoglobulins A and G, appeared as a composite of a single band and a double band (53 and 50 kDa, respectively) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The other Proteus proteinases had similar patterns but slightly different mobilities. In each case all proteinase activity in culture supernatants was demonstrated by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be associated with only the triple-band complex; all three bands were proteolytically active. The P. mirabilis proteinase was resistant to inhibitors of both serine and thiol proteinases but strongly inhibited by metal chelators, although it was not affected by phosphoramidon, an inhibitor of the thermolysin group of bacterial metalloproteinases. Active proteinase was detected in urine samples from P. mirabilis-infected patients; this is consistent with our detection of immunoglobulin A fragments of a size suggestive of P. mirabilis proteinase activity.
Collapse
Affiliation(s)
- L M Loomes
- Department of Pathology, Dundee University Medical School, Ninewells Hospital, Scotland
| | | | | |
Collapse
|
22
|
Belas R, Erskine D, Flaherty D. Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 1991; 173:6279-88. [PMID: 1917860 PMCID: PMC208381 DOI: 10.1128/jb.173.19.6279-6288.1991] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proteus mirabilis is a dimorphic bacterium which exists in liquid cultures as a 1.5- to 2.0-microns motile swimmer cell possessing 6 to 10 peritrichous flagella. When swimmer cells are placed on a surface, they differentiate by a combination of events that ultimately produce a swarmer cell. Unlike the swimmer cell, the polyploid swarmer cell is 60 to 80 microns long and possesses hundreds to thousands of surface-induced flagella. These features, combined with multicellular behavior, allow the swarmer cells to move over a surface in a process called swarming. Transposon Tn5 was used to produce P. mirabilis mutants defective in wild-type swarming motility. Two general classes of mutants were found to be defective in swarming. The first class was composed of null mutants that were completely devoid of swarming motility. The majority of nonswarming mutations were the result of defects in the synthesis of flagella or in the ability to rotate the flagella. The remaining nonswarming mutants produced flagella but were defective in surface-induced elongation. Strains in the second general class of mutants, which made up more than 65% of all defects in swarming were motile but were defective in the control and coordination of multicellular swarming. Analysis of consolidation zones produced by such crippled mutants suggested that this pleiotropic phenotype was caused by a defect in the regulation of multicellular behavior. A possible mechanism controlling the cyclic process of differentiation and dediferentiation involved in the swarming behavior of P. mirabilis is discussed.
Collapse
Affiliation(s)
- R Belas
- Center of Marine Biotechnology, University of Maryland, Baltimore 21202
| | | | | |
Collapse
|
23
|
Hu LT, Nicholson EB, Jones BD, Lynch MJ, Mobley HL. Morganella morganii urease: purification, characterization, and isolation of gene sequences. J Bacteriol 1990; 172:3073-80. [PMID: 2345135 PMCID: PMC209110 DOI: 10.1128/jb.172.6.3073-3080.1990] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Morganella morganii, a very common cause of catheter-associated bacteriuria, was previously classified with the genus Proteus on the basis of urease production. M. morganii constitutively synthesizes a urease distinct from that of other uropathogens. The enzyme, purified 175-fold by passage through DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 chromatography resins, was found to have a native molecular size of 590 kilodaltons and was composed of three distinct subunits with apparent molecular sizes of 63, 15, and 6 kilodaltons, respectively. Amino-terminal analysis of the subunit polypeptides revealed a high degree of conservation of amino acid sequence between jack bean and Proteus mirabilis ureases. Km for urea equalled 0.8 mM. Antiserum prepared against purified enzyme inhibited activity by 43% at a 1:2 dilution after 1 h of incubation. All urease activity was immunoprecipitated from cytosol by a 1:16 dilution. Antiserum did not precipitate ureases of other species except for one Providencia rettgeri strain but did recognize the large subunits of ureases of Providencia and Proteus species on Western blots (immunoblots). Thirteen urease-positive cosmid clones of Morganella chromosomal DNA shared a 3.5-kilobase (kb) BamHI fragment. Urease gene sequences were localized to a 7.1-kb EcoRI-SalI fragment. Tn5 mutagenesis revealed that between 3.3 and 6.6 kb of DNA were necessary for enzyme activity. A Morganella urease DNA probe did not hybridize with gene sequences of other species tested. Morganella urease antiserum recognized identical subunit polypeptides on Western blots of cytosol from the wild-type strain and Escherichia coli bearing the recombinant clone which corresponded to those seen in denatured urease. Although the wild-type strain and recombinant clone produced equal amounts of urease protein, the clone produced less than 1% of the enzyme activity of the wild-type strain.
Collapse
Affiliation(s)
- L T Hu
- Department of Medicine, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | | | |
Collapse
|
24
|
Abstract
Microbial ureases hydrolyze urea to ammonia and carbon dioxide. Urease activity of an infectious microorganism can contribute to the development of urinary stones, pyelonephritis, gastric ulceration, and other diseases. In contrast to these harmful effects, urease activity of ruminal and gastrointestinal microorganisms can benefit both the microbe and host by recycling (thereby conserving) urea nitrogen. Microbial ureases also play an important role in utilization of environmental nitrogenous compounds and urea-based fertilizers. Urease is a high-molecular-weight, multimeric, nickel-containing enzyme. Its cytoplasmic location requires that urea enter the cell for utilization, and in some species energy-dependent urea uptake systems have been detected. Eucaryotic microorganisms possess a homopolymeric urease, analogous to the well-studied plant enzyme composed of six identical subunits. Gram-positive bacteria may also possess homopolymeric ureases, but the evidence for this is not conclusive. In contrast, ureases from gram-negative bacteria studied thus far clearly possess three distinct subunits with Mrs of 65,000 to 73,000 (alpha), 10,000 to 12,000 (beta), and 8,000 to 10,000 (gamma). Tightly bound nickel is present in all ureases and appears to participate in catalysis. Urease genes have been cloned from several species, and nickel-containing recombinant ureases have been characterized. Three structural genes are transcribed on a single messenger ribonucleic acid and translated in the order gamma, beta, and then alpha. In addition to these genes, several other peptides are encoded in the urease operon of some species. The roles for these other genes are not firmly established, but may involve regulation, urea transport, nickel transport, or nickel processing.
Collapse
|
25
|
McLean RJ, Nickel JC, Cheng KJ, Costerton JW. The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol 1988; 16:37-79. [PMID: 3053050 DOI: 10.3109/10408418809104467] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Urease activity is a physiological function of many bacteria that enables these organisms to utilize urea as a source of nitrogen. The association of ureolytic bacteria with human or animal hosts varies widely from a commensal relationship as demonstrated with skin microflora, a symbiotic relationship in the gastrointestinal tract, to a pathogenic relationship in the urinary tract. Since similar or identical species of bacteria such as Staphylococcus aureus are found in all three environments, the effect of urease activity on the host must be solely a function of the environment of these organisms. In this review, the importance of urease to bacteria is discussed, identifying the gastrointestinal tract as a major reservoir of ureolytic bacteria and investigating the urinary tract environment and the infectious struvite stone production that often accompanies urease-producing bacteria there. Finally, an infection model is presented which explains the development and growth of these urinary calculi and their remarkable persistence in spite of modern urological treatments.
Collapse
Affiliation(s)
- R J McLean
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
el-Mahrouky A, McElhaney J, Bartone FF, King L. In vitro comparison of the properties of polydioxanone, polyglycolic acid and catgut sutures in sterile and infected urine. J Urol 1987; 138:913-5. [PMID: 2821292 DOI: 10.1016/s0022-5347(17)43415-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of immersion in sterile urine, infected urine and plasma on the breaking strength and stiffness of polydioxanone (PDS), polyglycolic acid (PGA) and chromic catgut was studied. Tests were done under closely controlled conditions with immersion periods varying from zero to ten days. The breaking strength and stiffness of the three suture materials was not significantly changed by immersion in plasma for periods up to ten days. In sterile urine, PDS lost all of its strength after three days of immersion while PGA lost 64% of its initial breaking strength after ten days. Catgut maintained its strength over the ten day study period. In E. coli-infected urine, PDS lost all of its strength in six days while PGA lost 71% and catgut 8% after ten days. In proteus-infected urine, PDS and PGA lost all their breaking strength after one day of immersion while catgut lost 5.8% of its initial strength after 10 days. Corresponding decreases in stiffness were also observed.
Collapse
Affiliation(s)
- A el-Mahrouky
- Division of Urology, Duke University, Durham, North Carolina
| | | | | | | |
Collapse
|
27
|
Kotelko K. Proteus mirabilis: taxonomic position, peculiarities of growth, components of the cell envelope. Curr Top Microbiol Immunol 1986; 129:181-215. [PMID: 3533451 DOI: 10.1007/978-3-642-71399-6_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Peerbooms PG, Verweij AM, Oe PL, MacLaren DM. Urinary pathogenicity of Proteus mirabilis strains isolated from faeces or urine. Antonie Van Leeuwenhoek 1986; 52:53-62. [PMID: 3524444 DOI: 10.1007/bf00402687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Urinary and faecal isolates of Proteus mirabilis were studied with respect to a number of bacterial properties as possible virulence factors in the pathogenesis of urinary tract infections: experimental virulence in a mouse model, haemolysin production, haemagglutinating properties, hydrophobicity of the bacterial surface, sensitivity to the bactericidal effect of human serum, serotype and cell invasiveness. Urinary isolates were slightly more virulent than faecal isolates in the mouse model. No other significant differences were found between both groups. So urinary strains seem to be selected from the faecal reservoir mainly on the basis of their prevalence in the faeces and not on the basis of the possession of particular virulence factors.
Collapse
|
29
|
Falkinham JO, Hoffman PS. Unique developmental characteristics of the swarm and short cells of Proteus vulgaris and Proteus mirabilis. J Bacteriol 1984; 158:1037-40. [PMID: 6427187 PMCID: PMC215547 DOI: 10.1128/jb.158.3.1037-1040.1984] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Swarming cells of Proteus mirabilis and Proteus vulgaris could be distinguished from their short-cell counterparts by virtue of their synthesis (or lack of synthesis) of certain enzymes and outer membrane proteins. Urease synthesis was constitutive in swarm cells and uninducible in short cells. In contrast, phenylalanine deaminase was inducible in both short and swarm cells, demonstrating that transcriptional and translational processes were functional. During swarm cell development, the amount of one outer membrane protein (45 kilodaltons) fell and the amounts of two others (50 and 28.3 kilodaltons) rose significantly, the level of cytochrome b decreased, and the synthesis of cytochromes a and d were repressed. Respiratory activities of swarm cells were greatly diminished, suggesting that energy for swarming came from fermentation rather than from respiration. Widespread changes in the pattern of enzyme activities, in cytochrome composition, and in the composition and type of outer membrane proteins suggest that they are due to transcriptional regulation.
Collapse
|