1
|
Solanki KS, Varshney R, Qureshi S, Thomas P, Singh R, Agrawal A, Chaudhuri P. Non-infectious outer membrane vesicles derived from Brucella abortus S19Δper as an alternative acellular vaccine protects mice against virulent challenge. Int Immunopharmacol 2020; 90:107148. [PMID: 33189614 DOI: 10.1016/j.intimp.2020.107148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The prime human and animal safety issues accentuate the search of promising newer alternative vaccine candidates to resolve complications associated with the live attenuated Brucella abortus strain19 (S19) vaccine. Outer membrane vesicles (OMVs S19 Δper) extracted from Brucella abortus S19Δper (S19Δper) as an alternative subunit vaccine candidate has been explored in the present study as OMVs are endowed with immunogenic molecules, including LPS and outer membrane proteins (OMPs) and do not cause infection by virtue of being an acellular entity. The LPS defective S19Δper released a higher amount of OMVs than its parent strain S19. Under transmission electron microscopy (TEM), OMVs were seen as nano-sized outward bulge from the surface of Brucella. Dynamic light scattering analysis of OMVs revealed that OMVs S19Δper showed the less polydispersity index (PDI) than OMVs S19 pointing towards relatively more homogenous OMVs populations. Both OMVs S19Δper and OMVs S19 with or without booster dose and S19 vaccine were used for immunization of mice and subsequently challenged with 2 × 105 CFU virulent Brucella abortus strain 544 (S544) to assess protective efficacy of vaccines. The less splenic weight index and less S544 count in OMVs immunized mice in comparison to unimmunized mice after S544 challenge clearly indicated good protective efficacy of OMVs. OMVs S19 Δper induced relatively high titer of IgG than OMVs S19 but conferred nearly equal protection against brucellosis. An ELISA based determination of IgG and its isotype response, Cytometric Bead Array (CBA) based quantitation of serum cytokines and FACS based enumeration of CD4+ and CD8+ T cells revealed high titer of IgG, production of both Th1 (IgG2a) and Th2 (IgG1) related antibodies, stimulation of IL-2, TNF (Th1) and IL-4, IL-6, IL-10 (Th2) cytokines, and induced T cell response suggested that OMVs S19Δper elicited Th1 and Th2 type immune response and ensured protection against S544 challenge in murine model.
Collapse
Affiliation(s)
- Khushal Singh Solanki
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rajat Varshney
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh 231001, India.
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Department of Veterinary Pathology, Khalsa College of Veterinary & Animal Sciences, Amritsar, Punjab 143001, India.
| | - Aditya Agrawal
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
2
|
Khalafalla AI, Rashid J, Khan RA, Alamin KM, Benkhelil A, De Massis F, Calistri P, Giovannini A, Khan IA, Al Hosani MA, Al Muhairi SS. Preliminary Comparative Assessment of Brucellergene Skin Test for Diagnosis of Brucellosis in Dromedary Camels ( Camelus dromedarius). Vector Borne Zoonotic Dis 2020; 20:412-417. [PMID: 32077807 DOI: 10.1089/vbz.2019.2537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to evaluate the use of Brucellergene skin test (BST) for the diagnosis of Brucellosis in camels (Camelus dromedarius) in comparison with Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent assay (c-ELISA). A total of 68 apparently healthy adult dromedary camels of either gender from three different geographical locations of Abu Dhabi Emirate, United Arab Emirates (UAE), were included in the study. The skin test was applied on two shaved areas at the middle of the neck: one for the test and the other area was injected with normal saline as a control. Reading was done 72 h postinjection. Results were subjected to Bayesian analysis to assess the test performances in camels. The model estimated the following sensitivity and specificity median values: BST: Se = 70.72%, Sp = 98.82%; RBT: Se = 93.27%, Sp = 97.79%; and c-ELISA: Se = 94.78%, Sp = 98.48%. As the BST investigated in this study proved to be a highly specific test, we propose using it as a confirmatory test in camels particularly when the serological tests give doubtful results on individual animals.
Collapse
Affiliation(s)
- Abdelmalik Ibrahim Khalafalla
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Javed Rashid
- Al Wathba Stables, Abu Dhabi, United Arab Emirates
| | - Rashid A Khan
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Khalafallah M Alamin
- Al Khatem Veterinary Clinic, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | | | - Fabrizio De Massis
- OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Paolo Calistri
- OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Armando Giovannini
- OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Irfan A Khan
- Advanced Scientific Group LLC, Abu Dhabi, United Arab Emirates
| | - Mohamed A Al Hosani
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Salama S Al Muhairi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Xu Z, Qin Y, Wang Y, Li X, Cao H, Zheng SJ. A Critical Role of Bacterioferritin in Salmonella pullorum-Induced IFN-β Expression in DF-1 Cells. Front Microbiol 2016; 7:20. [PMID: 26870001 PMCID: PMC4737897 DOI: 10.3389/fmicb.2016.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/11/2016] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica serovar Pullorum (S. pullorum) causes pullorum disease in poultry and results in great economic losses to the poultry industry. Although an eradication program has been successfully performed in some countries, it remains a major threat to countries with poor poultry disease surveillance. Currently there are no effective control measures for pullorum disease except eradication. In particular, the pathogenesis of S. pullorum infection is still largely unknown. Here we identified bacterioferritin (Bfr) as a major antigen of S. pullorum to elicit a humoral immune response. Furthermore, we demonstrate that Bfr induces activation of IFN-β promoter and mRNA expression in DF-1 cells, and that the amino acids 1-50 form a critical domain involved in IFN-β expression. Moreover, we found that the p38 MAPK signaling pathway was essential for Bfr-induced IFN-β expression. Importantly, S. pullorum-induced IFN-β expression was totally abolished by deficiency of Bfr in the bacteria, indicating that Bfr plays a critical role in S. pullorum induced IFN-β expression in DF-1 cells. Our findings provide new insights into the molecular mechanisms of the host response to S. pullorum infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China; Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China; College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
4
|
Protective immune-response of aluminium hydroxide gel adjuvanted phage lysate of Brucella abortus S19 in mice against direct virulent challenge with B. abortus 544. Biologicals 2015; 43:369-76. [PMID: 26156404 DOI: 10.1016/j.biologicals.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022] Open
Abstract
The prophylactic efficacies of plain and alum adsorbed lysate were evaluated by direct virulent challenge in mice model. A recently isolated brucellaphage 'ϕLd' was used for generation of lysates. Twenty four h incubated Brucella abortus S19 broth cultures standardized to contain approximately 10(8) CFU/ml were found suitable for generation of lysates. Three lysate batches produced through separate cycles did not show any significant variation with respect to protein and polysaccharide contents, endotoxin level and phage counts, indicating that compositionally stable lysate preparations can be generated through an optimized production process. Three polypeptides of ∼16, 19 and 23 kDa could be identified as immuno-dominant antigens of the lysate which induced both humoral and cell-mediated immune responses in a dose dependent manner. Results of efficacy evaluation trial confirmed dose-dependent protective potencies of lysate preparation. The lysate with an antigenic dose of 0.52 μg protein and 60 μg CHO adsorbed on aluminium gel (0.1 percent aluminium concentration) exhibited the highest protective potency which was greater than that induced by standard S19 vaccine. Phage lysate methodology provides a very viable option through which an improved immunizing preparation with all desirable traits can be developed against brucellosis, and integrated with immunization programmes in a more efficient manner.
Collapse
|
5
|
Ghasemi A, Zarnani AH, Ghoodjani A, Rezania S, Salari MH, Jeddi-Tehrani M. Identification of a new immunogenic candidate conferring protection against Brucella melitensis infection in Mice. Mol Immunol 2014; 62:142-9. [DOI: 10.1016/j.molimm.2014.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 01/18/2023]
|
6
|
Deveson Lucas DS, Lo M, Bulach DM, Quinsey NS, Murray GL, Allen A, Adler B. Recombinant LipL32 stimulates interferon-gamma production in cattle vaccinated with a monovalent Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis vaccine. Vet Microbiol 2014; 169:163-70. [DOI: 10.1016/j.vetmic.2013.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/01/2022]
|
7
|
Brucella melitensis T cell epitope recognition in humans with brucellosis in Peru. Infect Immun 2013; 82:124-31. [PMID: 24126518 DOI: 10.1128/iai.00796-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brucella melitensis, one of the causative agents of human brucellosis, causes acute, chronic, and relapsing infection. While T cell immunity in brucellosis has been extensively studied in mice, no recognized human T cell epitopes that might provide new approaches to classifying and prognosticating B. melitensis infection have ever been delineated. Twenty-seven pools of 500 major histocompatibility complex class II (MHC-II) restricted peptides were created by computational prediction of promiscuous MHC-II CD4(+) T cell derived from the top 50 proteins recognized by IgG in human sera on a genome level B. melitensis protein microarray. Gamma interferon (IFN-γ) and interleukin-5 (IL-5) enzyme-linked immunospot (ELISPOT) analyses were used to quantify and compare Th1 and Th2 responses of leukapheresis-obtained peripheral blood mononuclear cells from Peruvian subjects cured after acute infection (n = 9) and from patients who relapsed (n = 5). Four peptide epitopes derived from 3 B. melitensis proteins (BMEI 1330, a DegP/HtrA protease; BMEII 0029, type IV secretion system component VirB5; and BMEII 0691, a predicted periplasmic binding protein of a peptide transport system) were found repeatedly to produce significant IFN-γ ELISPOT responses in both acute-infection and relapsing patients; none of the peptides distinguished the patient groups. IL-5 responses against the panel of peptides were insignificant. These experiments are the first to systematically identify B. melitensis MHC-II-restricted CD4(+) T cell epitopes recognized by the human immune response, with the potential for new approaches to brucellosis diagnostics and understanding the immunopathogenesis related to this intracellular pathogen.
Collapse
|
8
|
Akhvlediani T, Chitadze N, Laws TR, Makharadze M, Chubinidze M, Tsanava S, Commander NJ, Perkins SD, Dyson EH, Rivard RG, Hepburn MJ, Simpson AJH, Imnadze P, Trapaidze N. Comparison of total antibody and interferon-γ T-cell responses in patients following infection with brucellosis in Georgia. J Infect Public Health 2012; 5:321-31. [PMID: 23164560 DOI: 10.1016/j.jiph.2012.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is an ancient disease that still remains a significant threat to humans and is typically linked to exposure to infected animals and/or consumption of unpasteurized animal products. Despite this history, we have a relatively limited understanding of the host characteristics of this disease; consequently, further research is necessary. In this study, we examined the humoral immune response in 43 Georgian individuals that had been diagnosed with brucellosis 3-12 months before enrollment in the study, many of whom still had symptoms after the completion of antibiotic therapy. In total, 35 of 43 (83%) of the patients had antibodies that bound to Brucella lipopolysaccharide (LPS) by COMPELISA, and 34 of 38 (89%) patients had demonstrable specific antibodies to Brucellergene™ antigens; the results from the two ELISAs were highly correlated (p=0.031, r=0.851). We also studied the cellular immune responses in 15 patients. All of the patients generated interferon (IFN)-γ in response to ex vivo stimulation with Brucella protein antigens, and the majority of the patients maintained measurable humoral responses to both LPS and protein antigens. From this initial study, we conclude that measurement of antibody and of cellular (IFN-γ) responses to brucellergene OCB protein epitopes may be worthy of further investigation as an alternative or adjunct to current diagnostics.
Collapse
Affiliation(s)
- T Akhvlediani
- Clinical Research Unit-CRU, Technology Management Company-TMC, Tbilisi, Georgia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mirabella A, Yañez Villanueva RM, Delrue RM, Uzureau S, Zygmunt MS, Cloeckaert A, De Bolle X, Letesson JJ. The two-component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. MICROBIOLOGY-SGM 2012; 158:2642-2651. [PMID: 22859617 DOI: 10.1099/mic.0.060863-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial adaptation to environmental conditions is essential to ensure maximal fitness in the face of several stresses. In this context, two-component systems (TCSs) represent a predominant signal transduction mechanism, allowing an appropriate response to be mounted when a stimulus is sensed. As facultative intracellular pathogens, Brucella spp. face various environmental conditions, and an adequate response is required for a successful infection process. Recently, bioinformatic analysis of Brucella genomes predicted a set of 15 bona fide TCS pairs, among which some have been previously investigated. In this report, we characterized a new TCS locus called prlS/R, for probable proline sensor-regulator. It encodes a hybrid histidine kinase (PrlS) with an unusual Na(+)/solute symporter N-terminal domain and a transcriptional regulator (belonging to the LuxR family) (PrlR). In vitro, Brucella spp. with a functional PrlR/S system form bacterial aggregates, which seems to be an adaptive response to a hypersaline environment, while a prlS/R mutant does not. We identified ionic strength as a possible signal sensed by this TCS. Finally, this work correlates the absence of a functional PrlR/S system with the lack of hypersaline-induced aggregation in particular marine Brucella spp.
Collapse
Affiliation(s)
- Aurélie Mirabella
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Rosse-Mary Yañez Villanueva
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Rose-May Delrue
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Sophie Uzureau
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Michel S Zygmunt
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Axel Cloeckaert
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
10
|
Pajuaba ACAM, Silva DAO, Almeida KC, Cunha-Junior JP, Pirovani CP, Camillo LR, Mineo JR. Immunoproteomics of Brucella abortus
reveals differential antibody profiles between S19-vaccinated and naturally infected cattle. Proteomics 2012; 12:820-31. [DOI: 10.1002/pmic.201100185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ana C. A. M. Pajuaba
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Deise A. O. Silva
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
- Laboratory of Allergy and Clinical Immunology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Karine C. Almeida
- Laboratory of Allergy and Clinical Immunology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Carlos P. Pirovani
- Laboratory of Proteomic; Center of Biotechnology and Genetics; Universidade Estadual de Santa Cruz; Ilhéus BA Brazil
| | - Luciana R. Camillo
- Laboratory of Proteomic; Center of Biotechnology and Genetics; Universidade Estadual de Santa Cruz; Ilhéus BA Brazil
| | - José R. Mineo
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| |
Collapse
|
11
|
Al-Mariri A, Mahmoud NH, Hammoud R. Efficacy evaluation of live Escherichia coli expression Brucella P39 protein combined with CpG oligodeoxynucleotides vaccine against Brucella melitensis 16M, in BALB/c mice. Biologicals 2012; 40:140-5. [PMID: 22296786 DOI: 10.1016/j.biologicals.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022] Open
Abstract
Brucella is gram-negative bacteria responsible for brucellosis in a wide variety of animals and humans. BALB/c mice were immunized with live Escherichia coli expression the p39 gene of Brucella melitensis, a gene coding for the periplasmic binding protein. Mice were injected with either E. coli BL21 (DE3) pEt15b or E. coli BL21 (DE3) pEt15b-p39 alone or adjuvanted with either CpG oligodeoxynucleotides (CpG ODN) or non-CpG ODN. E. coli BL21 (DE3) pEt15b-p39 with CpG ODN or with non-CpG ODN mice groups showed a significant IFN-γ production and T-cell proliferation as a reaction to P39 antigen. In addition, antibody responses (IgG, IgG1 and IgG2a), were only found in these two mice groups. A higher level of protection against B. melitensis 16M were observed in mice immunized with E. coli BL21 (DE3) pEt15b-p39 and CpG ODN comparing with those immunized with E. coli BL21 (DE3) pEt15b-p39 alone or with non-CpG ODN. No protection against B. melitensis 16M was observed in mice immunized with E. coli BL21 (DE3) pEt15b alone or with the adjuvant. Rev.1 protection at 4 and 8 weeks post-challenge was more effective than that observed with E. coli BL21 (DE3) pEt15b-p39 and CpG ODN.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission, P.O. Box 6091, Damascus, Syria.
| | | | | |
Collapse
|
12
|
Yang Y, Wang L, Yin J, Wang X, Cheng S, Lang X, Wang X, Qu H, Sun C, Wang J, Zhang R. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Mol Immunol 2011; 49:175-84. [DOI: 10.1016/j.molimm.2011.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/18/2023]
|
13
|
Almirón MA, Ugalde RA. Iron homeostasis in Brucella abortus: the role of bacterioferritin. J Microbiol 2010; 48:668-73. [PMID: 21046346 DOI: 10.1007/s12275-010-0145-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/24/2010] [Indexed: 11/29/2022]
Abstract
Brucella abortus is the etiological agent of bovine brucellosis, an infectious disease of humans and cattle. Its pathogenesis is mainly based on its ability to survive and multiply inside macrophages. It has been demonstrated that if B. abortus ferrochelatase cannot incorporate iron into protoporphyrin IX to synthesize heme, the intracellular replication and virulence in mice is highly attenuated. Therefore, it can be hypothesized that the unavailability of iron could lead to the same attenuation in B. abortus pathogenicity. Thus, the purpose of this work was to obtain a B. abortus derivative unable to keep an internal iron pool and test its ability to replicate under iron limitation. To achieve this, we searched for iron-storage proteins in the genome of brucellae and found bacterioferritin (Bfr) as the sole ferritin encoded. Then, a B. abortus bfr mutant was built up and its capacity to store iron and replicate under iron limitation was investigated. Results indicated that B. abortus Bfr accounts for 70% of the intracellular iron content. Under iron limitation, the bfr mutant suffered from enhanced iron restriction with respect to wild type according to its growth retardation pattern, enhanced sensitivity to oxidative stress, accelerated production of siderophores, and altered expression of membrane proteins. Nonetheless, the bfr mutant was able to adapt and replicate even inside eukaryotic cells, indicating that B. abortus responds to internal iron starvation before sensing external iron availability. This suggests an active role of Bfr in controlling iron homeostasis through the availability of Bfr-bound iron.
Collapse
Affiliation(s)
- Marta A Almirón
- Instituto de Investigaciones Biotecnológicas, INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín CONICET, Buenos Aires 1650, Argentina.
| | | |
Collapse
|
14
|
Al-Mariri A. Protection of BALB/c mice against Brucella melitensis 16M infection induced by vaccination with live Escherchia coli expression Brucella P39 protein. Vaccine 2010; 28:1766-70. [DOI: 10.1016/j.vaccine.2009.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/25/2009] [Accepted: 12/07/2009] [Indexed: 11/17/2022]
|
15
|
Leclercq SY, Oliveira SC. Protective Immunity Induced by DNA-library Immunization against an Intracellular Bacterial Infection. J Drug Target 2008; 11:531-8. [PMID: 15203922 DOI: 10.1080/10611860410001669983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
DNA-based immunization has shown to be a viable alternative approach to induce protective immunity against Brucella abortus infection. However, the use of a unique gene may not be sufficient to induce full protection. Therefore, a new strategy based on library immunization has been described to improve the level of protection against different pathogens and to identify new protective genes. In the present study, a B. abortus library was subcloned into the mammalian expression vector pCMV-Ubi. This plasmid was designed to create a fusion between the gene of interest with ubiquitin. The analysis of this Brucella-library showed approximately 72% of clones containing inserts with an average size of 500-2000 bp. Further, homology searches were performed using the BLASTn program, and all sequenced clones showed homology with Brucella genes, as expected. BALB/c mice immunised intramuscularly with the Brucella genomic expression library showed a strong specific total IgG antibody response to a Brucella protein extract, with production of IgG1 and IgG2a isotypes. Regarding cellular immunity, high levels of IFN-gamma and no IL-4 were detected in primed mouse splenocytes and partial protection against infection was reached in animals vaccinated with the Brucella library compared to the control group.
Collapse
Affiliation(s)
- Sophie Y Leclercq
- Department of Biochemistry and Immunology, Institute for Investigation in Immunology-Millenium Institute, Federal University of Minas Gerais, Pampulha, Belo Hoizonte-MG, Brazil
| | | |
Collapse
|
16
|
González M, Andrews E, Folch H, Sáez D, Cabrera A, Salgado P, Oñate A. Cloning, expression and immunogenicity of the translation initiation factor 3 homologue of Brucella abortus. Immunobiology 2008; 214:113-20. [PMID: 19167989 DOI: 10.1016/j.imbio.2008.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/05/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
The infC gene of Brucella abortus encoding the translation initiation factor 3 (IF3) was cloned, sequenced and expressed in Escherichia coli. The amino acid sequence analysis predicted a product with 74-80% identity with the IF3 proteins from Mesorhizobium loti, Sinorhizobium meliloti, Aurantimona sp. and Mesorhizobium sp. This protein also show 54% amino acid sequence identity with the E. coli IF3, sharing most of the residues which were described as responsible for the biological activity of this protein. Since we have previously reported the immunoprotective capacity of this Brucella protein, we stimulated lymphoid cells from animals immunized with purified recombinant Brucella IF3 protein "in vitro" with this antigen. The lymphocytes were able to mount a strong proliferative response with concomitant production of gamma interferon, but without the secretion of either IL-4 or antibodies. Thus, immunization with the Brucella recombinant IF3 protein promotes a TH-1 polarized response, allowing us to propose it as a promising candidate antigen for the development of subunit vaccines against Brucella.
Collapse
Affiliation(s)
- Marcela González
- Department of Microbiology, Faculty of Biological Sciences, Molecular Immunology Laboratory, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
17
|
Riber U, Jungersen G. Cell-mediated immune responses differentiate infections with Brucella suis from Yersinia enterocolitica serotype O:9 in pigs. Vet Immunol Immunopathol 2007; 116:13-25. [PMID: 17270281 DOI: 10.1016/j.vetimm.2006.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/19/2006] [Accepted: 12/27/2006] [Indexed: 11/23/2022]
Abstract
Due to almost identical lipopolysaccharide (LPS) O-antigens, infections with Yersinia enterocolitica serotype O:9 (YeO:9) cause false positive serological reactions (FPSR) in tests for Brucella and thus cause problems in National Brucella surveillance programs. As LPS are strong inducers of antibody responses it was hypothesized that cell-mediated immune responses to non-LPS antigens of the two bacteria can be used to separate immune responses to these two biologically very different infections. Following subclinical experimental infections with Brucella suis biovar 2, high interferon-gamma (IFN-gamma) assay responses with a commercial Brucella melitensis antigen preparation (Brucellergene OCB) preceded the development of antibodies. High IFN-gamma responses in the seven B. suis inoculated pigs with serological evidence of infection were consistent throughout a 20-week post-inoculation observation period. In contrast, IFN-gamma responses in two B. suis inoculated pigs without bacteriological or serological evidence of infection were below a cut-point of 25pg/ml at all samplings. IFN-gamma responses in repeated samplings from 5 uninfected control pigs and 18 pigs experimentally infected with YeO:9 were all negative, except for solitary false positives in 3.7% of the samples from both the experimentally YeO:9 infected pigs and control pigs. Skin tests using the same commercial Brucella antigen confirmed the ability of cell-mediated immune responses to differentiate between the two infections. In addition, a field evaluation of the diagnostic use of cell-mediated immune responses by IFN-gamma assay and skin test to resolve serological suspicions of Brucella was conducted in an YeO:9 infected pig herd. Following a screening of 200 pigs 39 pigs were identified with false positive serological Brucellosis reactions. While 36 of the 39 FPSR pigs were also FPSR in a second test, none of the pigs were test positive in whole blood IFN-gamma assay or Brucellergene OCB skin test. In conclusion, use of IFN-gamma assay and skin test as measurements of cell-mediated immune responses to non-LPS Brucella antigens were specific and sensitive in discriminating subclinical experimental infections with B. suis from both natural and experimental infections with YeO:9.
Collapse
Affiliation(s)
- U Riber
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen, Denmark
| | | |
Collapse
|
18
|
González-Smith A, Vemulapalli R, Andrews E, Oñate A. Evaluation of Brucella abortus DNA vaccine by expression of Cu–Zn superoxide dismutase antigen fused to IL-2. Immunobiology 2006; 211:65-74. [PMID: 16446171 DOI: 10.1016/j.imbio.2005.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 09/06/2005] [Indexed: 11/30/2022]
Abstract
The Cu-Zn superoxide dismutase (SOD) antigen of Brucella abortus was previously identified to be a T cell antigen which induces both proliferation of and gamma interferon (IFN-gamma) secretion by T cells from infected mice. In an earlier study, we demonstrated that intramuscular injection of mice with a plasmid DNA carrying the gene for SOD leads to the development of significant protection against B. abortus challenge. It has been reported that the antigen-specific immune responses generated by a DNA vaccine can be enhanced by co-delivery of certain cytokine genes. In this study, we evaluated the effect of delivering IL-2 on the efficacy of SOD DNA vaccine by generating a plasmid (pSecTag-SOD-IL2) that codes for a secretory fusion protein of SOD and IL-2. Another plasmid (pSecTag-SOD) that codes for only SOD as a secretory protein was used for comparison. BALB/c mice injected intramuscularly with pSecTag-SOD or pSecTag-SOD-IL2, but not the control plasmid pSecTag, developed SOD-specific antibody and T cell immune responses. Upon in vitro stimulation with recombinant SOD (rSOD) antigen, T cells from mice immunized with pSecTag-SOD-IL2, in comparison with those from mice immunized with pSecTag-SOD, exhibited a lower proliferation response but produced significantly higher concentrations of IFN-gamma. Both DNA vaccines, however, induced similar levels of SOD-specific antibodies and cytotoxic T cell response. Although mice immunized with pSecTag-SOD-IL2 showed increased resistance to challenge with B. abortus virulent strain 2308, this increase was not statistically significant from that of pSecTag-SOD vaccinated mice. These results suggest that a SOD DNA vaccine fused to IL2 did not improve protection efficacy.
Collapse
Affiliation(s)
- Andrés González-Smith
- Faculty of Biological Sciences, Molecular Immunology Laboratory, Department of Microbiology, Universidad de Concepción, P.O. Box 152-C, Concepción, Chile
| | | | | | | |
Collapse
|
19
|
Lee JS, Hadjipanayis AG, Parker MD. Viral vectors for use in the development of biodefense vaccines. Adv Drug Deliv Rev 2005; 57:1293-314. [PMID: 15935875 DOI: 10.1016/j.addr.2005.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
The heightened concerns about bioterrorism and the use of biowarfare agents have prompted substantial increased efforts towards the development of vaccines against a wide range of organisms, toxins, and viruses. An increasing variety of platforms and strategies have been analyzed for their potential as vaccines against these agents. DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.
Collapse
Affiliation(s)
- John S Lee
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
20
|
Abstract
Iron, as the ferrous or ferric ion, is essential for the life processes of all eukaryotes and most prokaryotes; however, the element is toxic when in excess of that needed for cellular homeostasis. Ferrous ions can react with metabolically generated hydrogen peroxide to yield toxic hydroxyl radicals that in turn degrade lipids, DNA, and other cellular biomolecules. Mechanisms have evolved in living systems for iron detoxification and for the removal of excess ferrous ions from the cytosol. These detoxification mechanisms involve the oxidation of excess ferrous ions to the ferric state and storage of the ferric ions in ferritin-like proteins. There are at least three types of ferritin-like proteins in bacteria: bacterial ferritin, bacterioferritin, and dodecameric ferritin. These bacterial proteins are related to the ferritins found in eukaryotes. The structure and physical characteristics of the ferritin-like compounds have been elucidated in several bacteria. Unfortunately, the physiological roles of the bacterial ferritin-like compounds have been less thoroughly studied. A few studies conducted with mutants indicated that ferritin-like compounds can protect bacterial cells from iron overload, serve as an iron source when iron is limited, protect the bacterial cells against oxidative stress and/or protect DNA against enzymatic or oxidative attack. There is very little information available concerning the roles that ferritin-like compounds might play in the survival of bacteria in food, water, soil, or eukaryotic host environments.
Collapse
Affiliation(s)
- James L Smith
- Agricultural Research Service, U.S. Department ofAgriculture, Wyndmoor, Pennsylvania 19038, USA.
| |
Collapse
|
21
|
Muñoz-Montesino C, Andrews E, Rivers R, González-Smith A, Moraga-Cid G, Folch H, Céspedes S, Oñate AA. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun 2004; 72:2081-7. [PMID: 15039330 PMCID: PMC375181 DOI: 10.1128/iai.72.4.2081-2087.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the development of vaccines capable of providing immunity against brucellosis, Cu-Zn superoxide dismutase (SOD) has been demonstrated to be one of the protective immunogens of Brucella abortus. In an earlier study, we provided strong evidence that intramuscular injection with a plasmid DNA carrying the SOD gene (pcDNA-SOD) was able to induce a protective immune response. The present study was designed to characterize T-cell immune responses after an intraspleen (i.s.) vaccination of BALB/c mice with pcDNA-SOD. Animals vaccinated with pcDNA-SOD did not develop SOD-specific antibodies, at least until week 4 after immunization (the end of the experiment), and in vitro stimulation of their splenocytes with either recombinant Cu-Zn SOD or crude Brucella protein induced the secretion of gamma interferon (IFN-gamma), but not interleukin-4, and elicited the induction of cytotoxic-T-lymphocyte activity. Upon analyzing the SOD-specific T-cell responses, the pcDNA-SOD vaccination was found to be stimulating both CD4(+)- and CD8(+)-T-cell populations. However, only the CD4(+) population was able to produce IFN-gamma and only the CD8(+) population was able to induce cytotoxic activity. Nevertheless, although i.s. route vaccination induces a significant level of protection in BALB/c mice against challenge with the virulent B. abortus strain 2308, vaccination by the intramuscular route with a similar amount of plasmid DNA does not protect. Based on these results, we conclude that i.s. immunization with pcDNA-SOD vaccine efficiently induced a Th1 type of immune response and a protective response that could be related to IFN-gamma production and cytotoxic activity against infected cells by SOD-specific CD4(+) and CD8(+) T cells, respectively.
Collapse
Affiliation(s)
- Carola Muñoz-Montesino
- Molecular Immunology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 2003; 16:65-78. [PMID: 12525425 PMCID: PMC145300 DOI: 10.1128/cmr.16.1.65-78.2003] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellosis caused by Brucella spp. is a major zoonotic disease. Control of brucellosis in agricultural animals is a prerequisite for the prevention of this disease in human beings. Recently, Brucella melitensis was declared by the Centers for Disease Control and Prevention to be one of three major bioterrorist agents due to the expense required for the treatment of human brucellosis patients. Also, the economic agricultural loss due to bovine brucellosis emphasizes the financial impact of brucellosis in society. Thus, vaccination might efficiently solve this disease. Currently, B. abortus RB51 and B. melitensis REV.1 are used to immunize cattle and to immunize goats and sheep, respectively, in many countries. However, these genetically undefined strains still induce abortion and persistent infection, raising questions of safety and efficiency. In fact, the REV.1 vaccine is quite virulent and apparently unstable, creating the need for improved vaccines for B. melitensis. In addition, Brucella spp. may or may not provide cross-protection against infection by heterologous Brucella species, hampering the acceleration of vaccine development. This review provides our current understanding of Brucella pathogenesis and host immunity for the development of genetically defined efficient vaccine strains. Additionally, conditions required for an effective Brucella vaccine strain as well as the future research direction needed to investigate Brucella pathogenesis and host immunity are postulated.
Collapse
Affiliation(s)
- Jinkyung Ko
- Laboratory of Cellular and Molecular Immunology, Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
23
|
Oliveira SC, Soeurt N, Splitter G. Molecular and cellular interactions between Brucella abortus antigens and host immune responses. Vet Microbiol 2002; 90:417-24. [PMID: 12414160 DOI: 10.1016/s0378-1135(02)00225-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Host protection against Brucella abortus, is thought to be mediated primarily by a Th1 type immune response. Unfortunately, only few specific bacterial antigens involved in stimulating protective cellular immunity against Brucella are known. Therefore, identifying bacterial proteins that induce a T-lymphocyte mediated response is critical to determine Brucella immunity. Several library screening methods are discussed that have been used to identify Brucella proteins that stimulate T lymphocytes including cellular immunoblotting, Escherichia coli expressed Brucella proteins, green fluorescence reporter systems, and signature tagged mutagenesis. Future studies would likely examine how bacterial proteins expressed within host cells aid pathogen survival and/or induce host responses. Some of these newly identified bacterial gene products may serve as antigens to activate a protective host immune response. Also, identifying Brucella proteins expressed at particular times during infection will also yield insights into Brucella pathogenesis.
Collapse
Affiliation(s)
- Sergio C Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Av Antonio Carlos 6627, 30161 970 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | | | | |
Collapse
|
24
|
Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, Bruno L, Fossati CA, Spitz M. A DNA vaccine encoding lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun 2002; 70:2507-11. [PMID: 11953389 PMCID: PMC127889 DOI: 10.1128/iai.70.5.2507-2511.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to evaluate the immunogenicity of the Brucella abortus lumazine synthase (BLS) gene cloned into the pcDNA3 plasmid, which is driven by the cytomegalovirus promoter. Injection of plasmid DNA carrying the BLS gene (pcDNA-BLS) into BALB/c mice elicited both humoral and cellular immune responses. Antibodies to the encoded BLS included immunoglobulin G1 (IgG1) IgG2a, IgG2b, IgG3, and IgM isotypes. Animals injected with pcDNA-BLS exhibited a dominance of IgG2a over IgG1. In addition, spleen cells from vaccinated animals produced interleukin-2 and gamma interferon but not IL-10 or IL-4 after in vitro stimulation with recombinant BLS (rBLS), suggesting the induction of a Th1 response. Protection was evaluated by comparing the levels of infection in the spleens of vaccinated mice challenged with B. abortus 544. Immunization with pcDNA-BLS- reduced the bacterial burden relative to those in the control groups. Mice immunized with rBLS produced a significant humoral response but did not show a specific cellular response or any protection from challenge. Altogether, these data suggest that pcDNA-BLS is a good immunogen for the production of humoral and cell-mediated responses in mice and is a candidate for use in future studies of vaccination against brucellosis.
Collapse
Affiliation(s)
- Carlos A Velikovsky
- Facultad de Farmacia y Bioquímica Instituto de Estudios de la Inmunidad Humoral, UNICEN, Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, Letesson JJ. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect Immun 2002; 70:1915-23. [PMID: 11895955 PMCID: PMC127831 DOI: 10.1128/iai.70.4.1915-1923.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella is a facultative intracellular parasite that causes brucellosis in animals and humans. The protective immune response against Brucella involves both humoral and cell-mediated immunity. In previous studies, we demonstrated that the T-dominant Brucella antigens bacterioferritin (BFR) and P39 administered either as CpG adjuvant recombinant proteins or as naked-DNA plasmids induced a specific Th1-biased immune response in mice. In order to improve the protection conferred by the BFR and P39 vaccines and to evaluate the additive role of antilipopolysaccharide (anti-LPS) antibodies, we used live attenuated Yersinia enterocolitica serotypes O:3 and O:9 as delivery vectors for naked-DNA plasmids encoding these BFR and P39 antigens. Following two intragastric immunizations in BALB/c mice, the Yersinia vectors harboring a DNA vaccine encoding BFR or P39 induced antigen-specific serum immunoglobulin and Th1-type responses (both lymphocyte proliferation and gamma interferon production) among splenocytes. Moreover, as expected, antibodies recognizing Brucella abortus 544 lipopolysaccharide were detected in O:9-immunized mice but not in O:3-treated animals. Animals immunized with O:9 organisms carrying pCI or with O:9 organisms alone were found to be significantly resistant to infection by B. abortus 544. Our data demonstrated that pCI plasmids encoding BFR or P39 and delivered with live attenuated strains of Yersinia O:3 or O:9 can trigger Th1-type responses. The fact than only O:9 vectors induced a highly significant protective immunity against B. abortus 544 infection pointed out the crucial role of anti-LPS antibodies in protection. The best protection was conferred by a serotype O:9 strain carrying pCIP39, confirming the importance of the P39 T-cell antigen in this mechanism.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie et de Microbiologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Cassataro J, Delpino MV, Velikovsky CA, Bruno L, Fossati CA, Baldi PC. Diagnostic usefulness of antibodies against ribosome recycling factor from Brucella melitensis in human or canine brucellosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:366-9. [PMID: 11874879 PMCID: PMC119955 DOI: 10.1128/cdli.9.2.366-369.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diagnostic usefulness of an enzyme-linked immunosorbent assay (ELISA) using a purified recombinant ribosome recycling factor from Brucella melitensis (CP24 antigen) was tested in human and canine infections caused by smooth and rough Brucella species, respectively. Anti-CP24 antibodies were detected in 9 (43%) of 21 consecutive cases of canine brucellosis and in 8 (53%) of 15 dogs followed for 60 days after the diagnosis of acute brucellosis. Among eight patients with acute brucellosis, anti-CP24 antibodies were detected in four in the 10 weeks following diagnosis, but the remaining four were negative during the whole follow-up (22 weeks). The frequency of anti-CP24 antibodies was also low among 24 patients with subacute brucellosis and 23 patients with chronic illness (29 and 26%, respectively). While all patients positive for anti-CP24 antibodies were also positive for antibodies to total cytoplasmic proteins of Brucella (CP), five were negative for antibodies to another cytoplasmic protein, the Brucella lumazine synthase (BLS). When a larger sample of 35 human sera negative for anti-BLS antibodies was assayed, 85.7% were positive for anti-CP24 antibodies, suggesting that the combined measurement of both reactivities could yield a higher sensitivity than any test alone. To test this hypothesis, an ELISA combining both antigens was designed. The percentage of positive results among chronic cases was higher for this assay than for the individual measurement of anti-CP24 or anti-BLS antibodies (83 versus 26 and 65%, respectively) and was closer to the value obtained for anti-CP antibodies (91%). The frequency of anti-CP24 antibodies is low in both canine and human brucellosis. In the latter case, however, an ELISA combining CP24 and BLS is more sensitive than assays measuring anti-CP24 or anti-BLS antibodies separately and almost as sensitive as the ELISA using CP.
Collapse
Affiliation(s)
- Juliana Cassataro
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Cassataro J, Velikovsky CA, Giambartolomei GH, Estein S, Bruno L, Cloeckaert A, Bowden RA, Spitz M, Fossati CA. Immunogenicity of the Brucella melitensis recombinant ribosome recycling factor-homologous protein and its cDNA. Vaccine 2002; 20:1660-9. [PMID: 11858876 DOI: 10.1016/s0264-410x(01)00498-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A study was conducted to evaluate the immunogenicity of the Brucella melitensis ribosome recycling factor (RRF)-homologous protein (CP24). The CP24 gene was cloned, expressed in Escherichia coli and purified. The resulting purified recombinant protein (rCP24) produced delayed-type hypersensitivity (DTH) reactions in B. melitensis-infected mice but not in naive controls. Thus, we decided to characterise the immune responses generated with DNA vaccination (pcDNACP24) or immunisation with the rCP24 in adjuvant. Animals injected with pcDNACP24 exhibited a dominance of IgG2a to IgG1 while mice injected with rCP24 developed a higher response of IgG1 than IgG2a. Both immunisation protocols were capable of eliciting CP24-specific gamma interferon (IFN-gamma) producing cells. Spleen cells from pcDNACP24-immunised mice did not produce interleukin (IL)-4, IL-10 or up-regulation of IL-2 mRNA. Cells from rCP24-immunised mice produced IL-10, up-regulated IL-2 mRNA but did not produce IL-4. Neither immunisation with purified CP24 nor injection of pcDNACP24 protected mice against challenge with live smooth B. melitensis. However, the potential of CP24 for a Brucella diagnostic test based on an in vitro antigen (Ag)-specific IFN-gamma production or DTH test would be worth testing.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Brucella Vaccine/genetics
- Brucella Vaccine/immunology
- Brucella melitensis/genetics
- Brucella melitensis/immunology
- COS Cells
- Cloning, Molecular
- Cytokines/biosynthesis
- Cytokines/genetics
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Female
- Gene Expression
- Genes, Bacterial
- Hypersensitivity, Delayed
- Immunization
- Immunoglobulin G/biosynthesis
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- T-Lymphocytes/immunology
- Transfection
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Juliana Cassataro
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godfroid J, Walravens K, Letesson JJ. Induction of immune response in BALB/c mice with a DNA vaccine encoding bacterioferritin or P39 of Brucella spp. Infect Immun 2001; 69:6264-70. [PMID: 11553569 PMCID: PMC98760 DOI: 10.1128/iai.69.10.6264-6270.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we evaluated the ability of DNA vaccines encoding the bacterioferritin (BFR) or P39 proteins of Brucella spp. to induce cellular and humoral immune responses and to protect BALB/c mice against a challenge with B. abortus 544. We constructed eukaryotic expression vectors called pCIBFR and pCIP39, encoding BFR or P39 antigens, respectively, and we verified that these proteins were produced after transfection of COS-7 cells. PCIBFR or pCIP39 was injected intramuscularly three times, at 3-week intervals. pCIP39 induced higher antibody responses than did the DNA vector encoding BFR. Both vectors elicited a T-cell-proliferative response and also induced a strong gamma interferon production upon restimulation with either the specific antigens or Brucella extract. In this report, we also demonstrate that animals immunized with these plasmids elicited a strong and long-lived memory immune response which persisted at least 3 months after the third vaccination. Furthermore, pCIBFR and pCIP39 induced a typical T-helper 1-dominated immune response in mice, as determined by cytokine or immunoglobulin G isotype analysis. The pCIP39 delivered by intramuscular injection (but not the pCIBFR or control vectors) induced a moderate protection in BALB/c mice challenged with B. abortus 544 compared to that observed in positive control mice vaccinated with S19.
Collapse
Affiliation(s)
- A Al-Mariri
- Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie et de Microbiologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wood PR, Jones SL. BOVIGAM: an in vitro cellular diagnostic test for bovine tuberculosis. Tuberculosis (Edinb) 2001; 81:147-55. [PMID: 11463236 DOI: 10.1054/tube.2000.0272] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BOVIGAM which is based on the detection of gamma interferon (IFN- gamma) is a rapid, laboratory assay of a cell mediated immune response that may be used for the detection of tuberculosis (TB) infection in animals. Whole blood is first incubated overnight with bovine PPD, avian PPD or negative control antigens, and IFN- gamma in the supernatant plasma is then measured by EIA. TB infection is indicated by a predominant IFN- gamma response to bovine PPD. Since 1988, BOVIGAM has been extensively trialed on more than 200 000 cattle in Australia, Brazil, Ireland, Northern Ireland, Italy, New Zealand, Romania, Spain and the USA. Sensitivity has varied between 81.8% and 100% for culture-confirmed bovine TB and specificity between 94% and 100%. The IFN- gamma assay detects M. bovis infection earlier than the skin test and in New Zealand is applied to detect skin-test negative cattle with TB, where after slaughter a significant number of IFN- gamma reactors have TB. BOVIGAM is also approved in New Zealand for serial testing skin test positive cattle when non-specificity is suspected. Cattle are tested 7-30 days after a positive caudal fold test. The boosting effect of the skin test on T-cell activity allows blood to be cultured with PPD up to 30 h after collection without effecting accuracy. The BOVIGAM results are not affected by poor nutritional condition and are only mildly and briefly affected by dexamethasone treatment and parturition. IFN- gamma responses of cattle vaccinated with BCG are dose-dependent and short-lived. The BOVIGAM kit is now used routinely in many countries for the detection of M. bovis infected cattle, buffalo and goats.
Collapse
Affiliation(s)
- P R Wood
- Research and Development, CSL Animal Health, 45 Poplar Road, Parkville, Victoria, Australia.
| | | |
Collapse
|
30
|
Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson JJ. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun 2001; 69:4816-22. [PMID: 11447155 PMCID: PMC98569 DOI: 10.1128/iai.69.8.4816-4822.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P39 and the bacterioferrin (BFR) antigens of Brucella melitensis 16M were previously identified as T dominant antigens able to induce both delayed-type hypersensivity in sensitized guinea pigs and in vitro gamma interferon (IFN-gamma) production by peripheral blood mononuclear cells from infected cattle. Here, we analyzed the potential for these antigens to function as a subunitary vaccine against Brucella abortus infection in BALB/c mice, and we characterized the humoral and cellular immune responses induced. Mice were injected with each of the recombinant proteins alone or adjuvanted with either CpG oligodeoxynucleotides (CpG ODN) or non-CpG ODN. Mice immunized with the recombinant antigens with CpG ODN were the only group demonstrating both significant IFN-gamma production and T-cell proliferation in response to either Brucella extract or to the respective antigen. The same conclusion holds true for the antibody response, which was only demonstrated in mice immunized with recombinant antigens mixed with CpG ODN. The antibody titers (both immunoglobulin G1 [IgG1] and IgG2a) induced by P39 immunization were higher than the titers induced by BFR (only IgG2a). Using a B. abortus 544 challenge, the level of protection was analyzed and compared to the protection conferred by one immunization with the vaccine strain B19. Immunization with P39 and CpG ODN gave a level of protection comparable to the one conferred by B19 at 4 weeks postchallenge, and the mice were still significantly protected at 8 weeks postchallenge, although to a lesser extent than the B19-vaccinated group. Intriguingly, no protection was detected after BFR vaccination. All other groups did not demonstrate any protection.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Proteins
- Brucella Vaccine/genetics
- Brucella Vaccine/immunology
- Brucella Vaccine/isolation & purification
- Brucella abortus/immunology
- Brucellosis/immunology
- Brucellosis/prevention & control
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/isolation & purification
- Cell Division
- Cells, Cultured
- Chickens
- Cytochrome b Group/genetics
- Cytochrome b Group/immunology
- Cytochrome b Group/isolation & purification
- DNA/immunology
- Female
- Ferritins/genetics
- Ferritins/immunology
- Ferritins/isolation & purification
- Gene Expression
- Interferon-gamma/biosynthesis
- Interleukin-5/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/isolation & purification
- Mice
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides
- Periplasmic Binding Proteins
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Spleen/cytology
- Vaccination
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- A Al-Mariri
- Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie et de Microbiologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vemulapalli R, Cravero S, Calvert CL, Toth TE, Sriranganathan N, Boyle SM, Rossetti OL, Schurig GG. Characterization of specific immune responses of mice inoculated with recombinant vaccinia virus expressing an 18-kilodalton outer membrane protein of Brucella abortus. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:114-8. [PMID: 10618289 PMCID: PMC95834 DOI: 10.1128/cdli.7.1.114-118.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using the shuttle vector pMCO2 and the vaccinia virus wild-type WR strain, we constructed a recombinant virus expressing an 18-kDa outer membrane protein of Brucella abortus. BALB/c mice inoculated with this virus produced 18-kDa protein-specific antibodies, mostly of immunoglobulin G2a isotype, and in vitro stimulation of splenocytes from these mice with purified maltose binding protein-18-kDa protein fusion resulted in lymphocyte proliferation and gamma interferon production. However, these mice were not protected against a challenge with the virulent strain B. abortus 2308. Disruption of the 18-kDa protein's gene in vaccine strain B. abortus RB51 did not affect either the strain's protective capabilities or its in vivo attenuation characteristics. These observations suggest that the 18-kDa protein plays no role in protective immunity.
Collapse
Affiliation(s)
- R Vemulapalli
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tibor A, Jacques I, Guilloteau L, Verger JM, Grayon M, Wansard V, Letesson JJ. Effect of P39 gene deletion in live Brucella vaccine strains on residual virulence and protective activity in mice. Infect Immun 1998; 66:5561-4. [PMID: 9784574 PMCID: PMC108700 DOI: 10.1128/iai.66.11.5561-5564.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 39-kilodalton protein (P39) has previously been shown to be an immunodominant protein in Brucella infections. P39 gene deletion mutants of vaccine strains Brucella abortus S19 and Brucella melitensis Rev.1 were constructed by gene replacement. This deletion did not significantly modify the residual virulence of both vaccine strains in CD-1 mice. CD-1 mice vaccinated with the parent or mutant strains were protected against a virulent challenge. Mutant vaccine strains devoid of P39 could provide a means for differentiating vaccinated from infected animals.
Collapse
Affiliation(s)
- A Tibor
- Laboratoire de Microbiologie et d'Immunologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium.
| | | | | | | | | | | | | |
Collapse
|