1
|
Wu F, Wu Y, Zhang M, Tian L, Li X, Luo X, Zhang Y, Lu R. Comparative genomic analysis of ten Elizabethkingia anophelis isolated from clinical patients in China. Microbiol Spectr 2025; 13:e0178024. [PMID: 39612476 PMCID: PMC11705823 DOI: 10.1128/spectrum.01780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024] Open
Abstract
Elizabethkingia anophelis is an emerging pathogen that causes life-threatening infections in neonates and immunocompromised patients. In this study, we performed next-generation sequencing (NGS) to characterize 10 E. anophelis strains isolated from clinical patients in Nantong, China. Core, accessory, and unique genomes were composed of 2,891, 1,633, and 498 genes, respectively. Based on genetic screening for antimicrobial resistance genes (AMRs), all E. anophelis strains carried the same AMRs, including blaB, blaCME, and blaGOB. The virulence factors (VFs) in the 10 strains were classified into 13 functional categories, and the differences between strains were mainly in immune modulation and nutritional/metabolic factor. We further analyzed the genomic features of one of ten strains, NT06 strain. The capsule type of NT06 was X, which is rare among E. anophelis strains. Based on comparative analyses, we first found that NT06 carried the YclNOPQ-like operon, which is the complete transporter for petrobactin, to acquire iron. The genomic features are important for further investigations of epidemiology, resistance, virulence, and to identify appropriate treatments.IMPORTANCEElizabethkingia anophelis strains are opportunistic pathogens causing meningitis, bloodstream infections, and endophthalmitis in vulnerable populations. There is a lack of knowledge of the genetic diversity, presence of antimicrobial resistance genes (AMRs), and virulence factors (VFs) in E. anophelis isolated from clinical patients in China. Based on next-generation sequencing (NGS) and comparative genomic analyses, we determined the genomic features, phylogeny, and diversity of E. anophelis strains isolated from patients and identified a large accessory genome, intrinsic AMRs, and variable VFs. Based on comparative analyses, we identified a key strain, NT06, that carried a unique capsule type of X and the siderophore-mediated iron acquisition system (yclNOPQ-like genes). These findings advance our understanding of the genomic plasticity, evolution, and pathogenicity determinants of E. anophelis.
Collapse
Affiliation(s)
- Fei Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yan Wu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lijun Tian
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
2
|
Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, Drautz-Moses DI, Cai Y, Schuster SC, Junqueira ACM. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS NEXUS 2024; 3:pgae317. [PMID: 39157462 PMCID: PMC11327924 DOI: 10.1093/pnasnexus/pgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Blood-feeding is crucial for the reproductive cycle of the mosquito Aedes aegypti, as well as for the transmission of arboviruses to hosts. It is postulated that blood meals may influence the mosquito microbiome but shifts in microbial diversity and function during digestion remain elusive. We used whole-genome shotgun metagenomics to monitor the midgut microbiome in 60 individual females of A. aegypti throughout digestion, after 12, 24, and 48 h following blood or sugar meals. Additionally, ten individual larvae were sequenced, showing microbiomes dominated by Microbacterium sp. The high metagenomic coverage allowed for microbial assignments at the species taxonomic level, also providing functional profiling. Females in the post-digestive period and larvae displayed low microbiome diversities. A striking proliferation of Enterobacterales was observed during digestion in blood-fed mosquitoes. The compositional shift was concomitant with enrichment in genes associated with carbohydrate and protein metabolism, as well as virulence factors for antimicrobial resistance and scavenging. The bacterium Elizabethkingia anophelis (Flavobacteriales), a known human pathogen, was the dominant species at the end of blood digestion. Phylogenomics suggests that its association with hematophagous mosquitoes occurred several times. We consider evidence of mutually beneficial host-microbe interactions raised from this association, potentially pivotal for the mosquito's resistance to arbovirus infection. After digestion, the observed shifts in blood-fed females' midguts shifted to a sugar-fed-like microbial profile. This study provides insights into how the microbiome of A. aegypti is modulated to fulfil digestive roles following blood meals, emphasizing proliferation of potential symbionts in response to the dynamic midgut environment.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch str. 10, Marburg 35043, Germany
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elaine L Oliveira
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Stephan C Schuster
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
3
|
Chen S, Pham S, Terrapon N, Blom J, Walker ED. Elizabethkingia anophelis MSU001 Isolated from Anopheles stephensi: Molecular Characterization and Comparative Genome Analysis. Microorganisms 2024; 12:1079. [PMID: 38930461 PMCID: PMC11206156 DOI: 10.3390/microorganisms12061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Elizabethkingia anophelis MSU001, isolated from Anopheles stephensi in the laboratory, was characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF/MS), biochemical testing, and genome sequencing. Average nucleotide identity analysis revealed 99% identity with the type species E. anophelis R26. Phylogenetic placement showed that it formed a clade with other mosquito-associated strains and departed from a clade of clinical isolates. Comparative genome analyses further showed that it shared at least 98.6% of genes with mosquito-associated isolates (except E. anophelis As1), while it shared at most 88.8% of common genes with clinical isolates. Metabolites from MSU001 significantly inhibited growth of E. coli but not the mosquito gut symbionts Serratia marcescens and Asaia sp. W12. Insect-associated E. anophelis carried unique glycoside hydrolase (GH) and auxiliary activities (AAs) encoding genes distinct from those of clinical isolates, indicating their potential role in reshaping chitin structure and other components involved in larval development or formation of the peritrophic matrix. Like other Elizabethkingia, MSU001 also carried abundant genes encoding two-component system proteins (51), transcription factor proteins (188), and DNA-binding proteins (13). E. anophelis MSU001 contains a repertoire of antibiotic resistance genes and several virulence factors. Its potential for opportunistic infections in humans should be further evaluated prior to implementation as a paratransgenesis agent (by transgenesis of a symbiont of the vector).
Collapse
Affiliation(s)
- Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven Pham
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA;
| | - Nicolas Terrapon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR7257 CNRS AMU, USC 1408 INRAE, 13009 Marseille, France;
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392 Giessen, Germany;
| | - Edward D. Walker
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
4
|
Rodríguez-Temporal D, García-Cañada JE, Candela A, Oteo-Iglesias J, Serrano-Lobo J, Pérez-Vázquez M, Rodríguez-Sánchez B, Cercenado E. Characterization of an outbreak caused by Elizabethkingia miricola using Fourier-transform infrared (FTIR) spectroscopy. Eur J Clin Microbiol Infect Dis 2024; 43:797-803. [PMID: 38356016 DOI: 10.1007/s10096-024-04764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Fourier-transform infrared (FTIR) spectroscopy has the potential to be used for bacterial typing and outbreak characterization. We evaluated FTIR for the characterization of an outbreak caused by Elizabethkingia miricola. During the 2020-2021 period, 26 isolates (23 clinical and 3 environmental) were collected and analyzed by FTIR (IR Biotyper) and core-genome MLST (cgMLST), in addition to antimicrobial susceptibility testing. FTIR spectroscopy and cgMLST showed that 22 of the isolates were related to the outbreak, including the environmental samples, with only one discordance between both methods. Then, FTIR is useful for E. miricola typing and can be easily implemented in the laboratory.
Collapse
Affiliation(s)
- David Rodríguez-Temporal
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Javier Enrique García-Cañada
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, ISCIII, Majadahonda, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Ana Candela
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, ISCIII, Majadahonda, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Julia Serrano-Lobo
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, ISCIII, Majadahonda, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Belén Rodríguez-Sánchez
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Emilia Cercenado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
5
|
Lee YL, Hsueh PR. Emerging infections in vulnerable hosts: Stenotrophomonas maltophilia and Elizabethkingia anophelis. Curr Opin Infect Dis 2023; 36:481-494. [PMID: 37548375 DOI: 10.1097/qco.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW This systematic review aimed to explore the recent trends in the epidemiology, risk factors, and antimicrobial susceptibility of two emerging opportunistic pathogens, Stenotrophomonas maltophilia and Elizabethkingia anophelis . RECENT FINDINGS Since 2020, numerous outbreaks of S. maltophilia and E. anophelis have been reported worldwide. Most of these outbreaks have been associated with healthcare facilities, although one outbreak caused by E. anophelis in France was considered a community-associated infection. In terms of antimicrobial susceptibility, trimethoprim/sulfamethoxazole (TMP-SMZ), levofloxacin, and minocycline have exhibited good efficacy against S. maltophilia . Additionally, cefiderocol and a combination of aztreonam and avibactam have shown promising results in in vitro susceptibility testing. For E. anophelis , there is currently no consensus on the optimal treatment. Although some studies have reported good efficacy with rifampin, TMP-SMZ, piperacillin/tazobactam, and cefoperazone/sulbactam, minocycline had the most favourable in vitro susceptibility rates. Cefiderocol may serve as an alternative due to its low minimum inhibitory concentration (MIC) against E. anophelis . The role of vancomycin in treatment is still uncertain, although several successful cases with vancomycin treatment, even with high MIC values, have been reported. SUMMARY Immunocompromised patients are particularly vulnerable to infections caused by S. maltophilia and E. anophelis , but the optimal treatment strategy remains inconclusive. Further research is necessary to determine the most effective use of conventional and novel antimicrobial agents in combatting these multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital
- School of Medicine, Chung Shan Medical University
- PhD Program in Medical Biotechnology, National Chung-Hsing University
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital
- School of Medicine
- PhD Program for Aging, School of Medicine, China Medical University, Taichung
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
6
|
Mallinckrodt L, Huis In 't Veld R, Rosema S, Voss A, Bathoorn E. Review on infection control strategies to minimize outbreaks of the emerging pathogen Elizabethkingia anophelis. Antimicrob Resist Infect Control 2023; 12:97. [PMID: 37679842 PMCID: PMC10486102 DOI: 10.1186/s13756-023-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Elizabethkingia anophelis is a multi-drug resistant emerging opportunistic pathogen with a high mortality rate, causing healthcare-associated outbreaks worldwide. METHODS We report a case of E. anophelis pleuritis, resulting from transmission through lung transplantation, followed by a literature review of outbreak reports and strategies to minimize E. anophelis transmission in healthcare settings. RESULTS From 1990 to August 2022, 14 confirmed E. anophelis outbreak cohorts and 21 cohorts with suspected E. anophelis outbreaks were reported in literature. A total of 80 scientific reports with recommendations on diagnostics and infection control measures were included and summarized in our study. CONCLUSION Strategies to prevent and reduce spread of E. anophelis include water-free patient rooms, adequate hygiene and disinfection practices, and optimized diagnostic techniques for screening, identification and molecular typing.
Collapse
Affiliation(s)
- Lisa Mallinckrodt
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Gelre Hospital, Apeldoorn, The Netherlands
| | - Robert Huis In 't Veld
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Coque TM, Cantón R, Pérez-Cobas AE, Fernández-de-Bobadilla MD, Baquero F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023; 11:1050. [PMID: 37110473 PMCID: PMC10144039 DOI: 10.3390/microorganisms11041050] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the Global Health challenges of the 21st century. The inclusion of AMR on the global map parallels the scientific, technological, and organizational progress of the healthcare system and the socioeconomic changes of the last 100 years. Available knowledge about AMR has mostly come from large healthcare institutions in high-income countries and is scattered in studies across various fields, focused on patient safety (infectious diseases), transmission pathways and pathogen reservoirs (molecular epidemiology), the extent of the problem at a population level (public health), their management and cost (health economics), cultural issues (community psychology), and events associated with historical periods (history of science). However, there is little dialogue between the aspects that facilitate the development, spread, and evolution of AMR and various stakeholders (patients, clinicians, public health professionals, scientists, economic sectors, and funding agencies). This study consists of four complementary sections. The first reviews the socioeconomic factors that have contributed to building the current Global Healthcare system, the scientific framework in which AMR has traditionally been approached in such a system, and the novel scientific and organizational challenges of approaching AMR in the fourth globalization scenario. The second discusses the need to reframe AMR in the current public health and global health contexts. Given that the implementation of policies and guidelines are greatly influenced by AMR information from surveillance systems, in the third section, we review the unit of analysis ("the what" and "the who") and the indicators (the "operational units of surveillance") used in AMR and discuss the factors that affect the validity, reliability, and comparability of the information to be applied in various healthcare (primary, secondary, and tertiary), demographic, and economic contexts (local, regional, global, and inter-sectorial levels). Finally, we discuss the disparities and similarities between distinct stakeholders' objectives and the gaps and challenges of combatting AMR at various levels. In summary, this is a comprehensive but not exhaustive revision of the known unknowns about how to analyze the heterogeneities of hosts, microbes, and hospital patches, the role of surrounding ecosystems, and the challenges they represent for surveillance, antimicrobial stewardship, and infection control programs, which are the traditional cornerstones for controlling AMR in human health.
Collapse
Affiliation(s)
- Teresa M. Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel D. Fernández-de-Bobadilla
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Hem S, Jarocki VM, Baker DJ, Charles IG, Drigo B, Aucote S, Donner E, Burnard D, Bauer MJ, Harris PNA, Wyrsch ER, Djordjevic SP. Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100083. [PMID: 34988536 PMCID: PMC8703026 DOI: 10.1016/j.crmicr.2021.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of closely related (< 50 SNV) clinical and environmental aquatic Elizabethkingia anophelis isolates. Identification of a provisional novel species Elizabethkingia umaracha. Novel blaGOB and blaB carbapenemases and extended spectrum β-lactamase blaCME alleles identified in Elizabethkingia spp. Analysis of the global phylogeny and pangenome of Elizabethkingia spp. Identification of novel ICE elements carrying uncharacterised genetic cargo in 67 / 94 (71.3%) of the aquatic environments Elizabethkingia spp.
Elizabethkingia species are ubiquitous in aquatic environments, colonize water systems in healthcare settings and are emerging opportunistic pathogens with reports surfacing in 25 countries across six continents. Elizabethkingia infections are challenging to treat, and case fatality rates are high. Chromosomal blaB, blaGOB and blaCME genes encoding carbapenemases and cephalosporinases are unique to Elizabethkingia spp. and reports of concomitant resistance to aminoglycosides, fluoroquinolones and sulfamethoxazole-trimethoprim are known. Here, we characterized whole-genome sequences of 94 Elizabethkingia isolates carrying multiple wide-spectrum metallo-β-lactamase (blaBand blaGOB) and extended-spectrum serine‑β-lactamase (blaCME) genes from Australian aquatic environments and performed comparative phylogenomic analyses against national clinical and international strains. qPCR was performed to quantify the levels of Elizabethkingia species in the source environments. Antibiotic MIC testing revealed significant resistance to carbapenems and cephalosporins but susceptibility to fluoroquinolones, tetracyclines and trimethoprim-sulfamethoxazole. Phylogenetics show that three environmental E. anophelis isolates are closely related to E. anophelis from Australian clinical isolates (∼36 SNPs), and a new species, E. umeracha sp. novel, was discovered. Genomic signatures provide insight into potentially shared origins and a capacity to transfer mobile genetic elements with both national and international isolates.
Collapse
Affiliation(s)
- Sopheak Hem
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Veronica M Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Sarah Aucote
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
9
|
Structural characterization of a GNAT family acetyltransferase from Elizabethkingia anophelis bound to acetyl-CoA reveals a new dimeric interface. Sci Rep 2021; 11:1274. [PMID: 33446675 PMCID: PMC7809356 DOI: 10.1038/s41598-020-79649-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNATs) catalyse the acetylation of a diverse range of substrates, thereby orchestrating a variety of biological processes within prokaryotes and eukaryotes. GNAT enzymes can catalyze the transfer of an acetyl group from acetyl coenzyme A to substrates such as aminoglycoside antibiotics, amino acids, polyamines, peptides, vitamins, catecholamines, and large macromolecules including proteins. Although GNATs generally exhibit low to moderate sequence identity, they share a conserved catalytic fold and conserved structural motifs. In this current study we characterize the high-resolution X-ray crystallographic structure of a GNAT enzyme bound with acetyl-CoA from Elizabethkingia anophelis, an important multi-drug resistant bacterium. The tertiary structure is comprised of six α-helices and nine β-strands, and is similar with other GNATs. We identify a new and uncharacterized GNAT dimer interface, which is conserved in at least two other unpublished GNAT structures. This suggests that GNAT enzymes can form at least five different types of dimers, in addition to a range of other oligomers including trimer, tetramer, hexamer, and dodecamer assemblies. The high-resolution structure presented in this study is suitable for future in-silico docking and structure–activity relationship studies.
Collapse
|