1
|
Núñez-Montero K, Leal K, Rojas-Villalta D, Castro M, Larronde C, Wagenknecht L, Contreras MJ. 16s gene metagenomic characterization in healthy stallion semen. Res Vet Sci 2024; 176:105354. [PMID: 38981836 DOI: 10.1016/j.rvsc.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Macarena Castro
- Doctorado en Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Carolina Larronde
- Facultad de La Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | | | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
2
|
Shastry RP, Ghate SD, Hameed A, Prasad Rao RS, Bhandary YP, Shetty R. Emergence of rare and low abundant anaerobic gut Firmicutes is associated with a significant downfall of Klebsiella in human colon cancer. Microb Pathog 2024; 193:106726. [PMID: 38848931 DOI: 10.1016/j.micpath.2024.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gut bacterial dysbiosis has been linked to several gastrointestinal diseases, including deadly colorectal cancer (CRC), a leading cause of mortality in cancer patients. However, perturbation in gut bacteriome during colon cancer (CC, devoid of colorectal malignancy) remains poorly explored. Here, 16S rRNA gene amplicon sequencing was carried out for fecal DNA samples targeted to hypervariable V3-V4 region by employing MiSeq platform to explore the gut bacterial community shift in CC patients. While alpha diversity indices predicted high species richness and diversity, beta diversity showed marked gut bacterial compositional dissimilarity in CC versus healthy controls (HC, n = 10 each). We observed a significant (p < 0.05, Wilcoxon Rank-Sum test) emergence of low-abundant anaerobic taxa, including Parvimonas and Peptostreptococcus, in addition to Subdoligranulum, Coprococcus, Holdemanella, Solobacterium, Bilophila, Blautia, Dorea, Moryella and several unidentified taxa, mainly affiliated to Firmicutes, in CC patients. In addition, we also traced the emergence of putative probiotic taxon Slackia, belonging to Actinomycetota, in CC patients. The emergence of anaerobic Firmicutes in CC is accompanied by a significant (p < 0.05) decline in the Klebsiella, as determined through linear discriminant analysis effect size (LEfSe) and heat tree analyses. Shifts in core microbiome and variation in network correlation were also witnessed. Taken together, this study highlighted a significant and consistent emergence of rare anaerobic Firmicutes suggesting possible anaerobiosis driving gut microbial community shift, which could be exploited in designing diagnostic and therapeutic tools targeted to CC.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University), Mangaluru, 575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, Nitte (Deemed to be University), Mangaluru, 575018, India
| | - Yashodhar P Bhandary
- Division of Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
3
|
Kihara H, Yamamoto H, Shikata H, Kaneko M. A Case of Sepsis in Which Escherichia coli and Fastidiosipila sanguinis Were Isolated and Identified From a Blood Culture. Cureus 2024; 16:e66159. [PMID: 39113819 PMCID: PMC11304404 DOI: 10.7759/cureus.66159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
We isolated Fastidiosipila sanguinis for the first time in Asia, alongside Escherichia coli, from blood culture specimens in a case of complicated urinary tract infection with sepsis. In our case, F. sanguinis took 96 hours to form colonies under anaerobic culture and showed sensitivity to ceftriaxone, administered for the urinary tract infection. The pathogenicity and clinical significance of F. sanguinis, as well as its impact on the host when coinfected with other pathogens, require further analysis through the accumulation of cases.
Collapse
Affiliation(s)
- Hisafumi Kihara
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Toon, JPN
| | - Haruka Yamamoto
- Department of Internal Medicine, Saiseikai Imabari Hospital, Imabari, JPN
| | - Hisaharu Shikata
- Department of Internal Medicine, Uwajima City Hospital, Uwajima, JPN
| | - Masahiko Kaneko
- Department of Internal Medicine, Uwajima City Hospital, Uwajima, JPN
| |
Collapse
|
4
|
Ke T, Rajoo A, Tinkov AA, Skalny AV, Tizabi Y, Rocha JBT, Bowman AB, Aschner M. Intestinal microbiota protects against methylmercury-induced neurotoxicity. Biometals 2024; 37:561-576. [PMID: 37973679 DOI: 10.1007/s10534-023-00554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
Methylmercury (MeHg) remains a global public health issue because of its frequent presence in human food sources obtained from the water. The excretion of MeHg in humans occurs slowly with a biological half-time of 32-47 days. Short-term MeHg exposure may cause long-lasting neurotoxicity. The excretion through feces is a major route in the demethylation of MeHg. Accumulating evidence suggests that the intestinal microbiota plays an important role in the demethylation of MeHg, thereby protecting the host from neurotoxic effects. Here, we discuss recent developments on the role of intestinal microbiota in MeHg metabolism, based on in vitro cell culture experiments, experimental animal studies and human investigations. Demethylation by intestinal bacteria is the rate-limiting step in MeHg metabolism and elimination. The identity of bacteria strains responsible for this biotransformation is currently unknown; however, the non-homogenous distribution of intestinal microbiota may lead to different demethylation rates in the intestinal tract. The maintenance of intestinal barrier function by intestinal microbiota may afford protection against MeHg-induced neurotoxicity, which warrant future investigations. We also discuss studies investigating the effects of MeHg exposure on the population structural stability of intestinal microbiota in several host species. Although this is an emerging area in metal toxicity, current research suggests that a change in certain phyla in the intestinal microbiota may indicate MeHg overexposure.
Collapse
Affiliation(s)
- Tao Ke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - André Rajoo
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
- Yaroslavl State University, Yaroslavl, Russia, 150003
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119991
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, 97105900, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Simpson AMR, De Souza MJ, Damani J, Rogers CJ, Williams NI, Weaver CM, Ferruzzi MG, Nakatsu CH. Gut microbes differ in postmenopausal women responding to prunes to maintain hip bone mineral density. Front Nutr 2024; 11:1389638. [PMID: 38706560 PMCID: PMC11067506 DOI: 10.3389/fnut.2024.1389638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Foods high in phenolics such as prunes have been shown to exert protective effects on bone mineral density (BMD), but only certain individuals experience these benefits. This post-hoc analysis of a 12-month randomized controlled trial aimed to identify the relationship among the gut microbiome, immune responses, and bone protective effects of prunes on postmenopausal women. Subjects who consumed 50-100 g prunes daily were divided into responders (n = 20) and non-responders (n = 32) based on percent change in total hip bone mineral density (BMD, ≥1% or ≤-1% change, respectively). DXA scans were used to determine body composition and BMD. Immune markers were measured using immunoassays and flow cytometry. Targeted phenolic metabolites were analyzed using ultra performance liquid chromatography-tandem mass spectrometry. The fecal microbiota was characterized through 16S rRNA gene PCR amplicon sequencing. After 12 months of prune consumption, anti-inflammatory markers showed responders had significantly lower levels of IL-1β and TNF-α. QIIME2 sequence analysis showed that microbiomes of responders and non-responders differed in alpha (Shannon and Faith PD, Kruskal-Wallis p < 0.05) and beta diversity (unweighted Unifrac, PERMANOVA p < 0.04) metrics both before and after prune treatment. Furthermore, responders had a higher abundance of bacterial families Oscillospiraceae and Lachnospiraceae (ANCOM-BC p < 0.05). These findings provide evidence that postmenopausal women with initial low BMD can benefit from prunes if they host certain gut microbes. These insights can guide precision nutrition strategies to improve BMD tailored to diet and microbiome composition.
Collapse
Affiliation(s)
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, College Park, PA, United States
| | - Janhavi Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Nancy I Williams
- Department of Nutritional Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Connie M Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Jaworska MM, Pecyna P, Jaskiewicz K, Rydzanicz M, Kaluzna M, Pawlaczyk K, Ploski R, Nowak-Malczewska DM, Karolak JA, Gajecka M. Differences in the composition of the bacterial element of the urinary tract microbiome in patients undergoing dialysis and patients after kidney transplantation. Front Microbiol 2023; 14:1187625. [PMID: 37350786 PMCID: PMC10282556 DOI: 10.3389/fmicb.2023.1187625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction The development of molecular biology methods and their application in microbial research allowed the detection of many new pathogens that cause urinary tract infections (UTIs). Despite the advances of using new research techniques, the etiopathogenesis of UTIs, especially in patients undergoing dialysis and patients after kidney transplantation, is still not fully understood. Methods This study aimed to characterize and compare the composition of the bacterial element of the urinary tract microbiome between the groups of patients undergoing dialysis (n = 50) and patients after kidney transplantation (n = 50), with positive or negative urine culture, compared to healthy individuals (n = 50). Results Asymptomatic bacteriuria was observed in 30% of the urine cultures of patients undergoing dialysis and patients after kidney transplantation, with Escherichia coli as the most dominant microorganism (73%) detected with the use of classical microbiology techniques. However, differences in the bacterial composition of the urine samples between the evaluated patient groups were demonstrated using the amplicon sequencing. Finegoldia, Leptotrichia, and Corynebacterium were found to be discriminative bacteria genera in patients after dialysis and kidney transplantation compared to the control group. In addition, in all of urine samples, including those without bacteriuria in classical urine culture, many types of bacteria have been identified using 16S rRNA sequencing. Discussion The revealed microbial characteristics may form the basis in searching for new diagnostic markers in treatment of patients undergoing dialysis and patients after kidney transplantation.
Collapse
Affiliation(s)
- Marcelina M. Jaworska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Pecyna
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Malgorzata Kaluzna
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Dorota M. Nowak-Malczewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
7
|
The Effects of Alcohol Drinking on Oral Microbiota in the Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095729. [PMID: 35565124 PMCID: PMC9103016 DOI: 10.3390/ijerph19095729] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
Abstract
The dysbiosis of oral microbiota is linked to numerous diseases and is associated with personal lifestyles, such as alcohol drinking. However, there is inadequate data to study the effect of alcohol drinking on oral microbiota from the Chinese population. Here, we profiled the oral microbiota of 150 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The results showed that drinkers had significantly higher alpha diversity than non-drinkers. A significant difference in overall microbiota composition was observed between non-drinkers and drinkers. Additionally, using DESeq analysis, we found genus Prevotella and Moryella, and species Prevotella melaninogenica and Prevotella tannerae were significantly enriched in drinkers; meanwhile, the genus Lautropia, Haemophilus and Porphyromonas, and species Haemophilus parainfluenzae were significantly depleted in drinkers. PICRUSt analysis showed that significantly different genera were mainly related to metabolism pathways. The oxygen-independent pathways, including galactose, fructose and mannose metabolism pathways, were enriched in drinkers and positively associated with genera enriched in drinkers; while the pyruvate metabolism pathway, an aerobic metabolism pathway, was decreased in drinkers and negatively associated with genera enriched in drinkers. Our results suggested that alcohol drinking may affect health by altering oral microbial composition and potentially affecting microbial functional pathways. These findings may have implications for better understanding the potential role those oral bacteria play in alcohol-related diseases.
Collapse
|
8
|
Li A, Liu B, Li F, He Y, Wang L, Fakhar-E-Alam Kulyar M, Li H, Fu Y, Zhu H, Wang Y, Jiang X. Integrated Bacterial and Fungal Diversity Analysis Reveals the Gut Microbial Alterations in Diarrheic Giraffes. Front Microbiol 2021; 12:712092. [PMID: 34475863 PMCID: PMC8406688 DOI: 10.3389/fmicb.2021.712092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been demonstrated to be associated with multiple gastrointestinal diseases, but information regarding the gut microbial alternations in diarrheic giraffe remains scarce. Here, 16S rDNA and ITS gene amplicon sequencing were conducted to investigate the gut microbial composition and variability in diarrheic giraffes. Results demonstrated that Firmicutes and Proteobacteria were the most dominant phyla in the gut bacterial community, whereas Ascomycota and Basidiomycota were observed to be predominant in the gut fungal community regardless of health status. However, the species and relative abundance of preponderant bacterial and fungal genera in healthy and diarrheic giraffes were different. In contrast to the relatively stabilized gut fungal community, gut bacterial community displayed a significant decrease in the alpha diversity, accompanied by distinct changes in taxonomic compositions. Bacterial taxonomic analysis revealed that the relative abundances of eight phyla and 12 genera obviously increased, whereas the relative abundances of two phyla and eight genera dramatically decreased during diarrhea. Moreover, the relative richness of five fungal genera significantly increased, whereas the relative richness of seven fungal genera significantly declined in diarrheic giraffes. Taken together, this study demonstrated that diarrhea could cause significant alternations in the gut microbial composition of giraffes, and the changes in the gut bacterial community were more significant than those in the gut fungal community. Additionally, investigating the gut microbial characteristics of giraffes in different health states is beneficial to provide a theoretical basis for establishing a prevention and treatment system for diarrhea from the gut microbial perspective.
Collapse
Affiliation(s)
- Aoyun Li
- Hubei Three Gorges Polytechnic, Yichang, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- Animal Husbandry Station of Bijie City, Bijie, China
| | | | - Huade Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- Hubei Three Gorges Polytechnic, Yichang, China
| |
Collapse
|