1
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
2
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
3
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
4
|
Thomson NM, Gilroy R, Getino M, Foster-Nyarko E, van Vliet AH, La Ragione RM, Pallen MJ. Remarkable genomic diversity among Escherichia isolates recovered from healthy chickens. PeerJ 2022; 10:e12935. [PMID: 35251780 PMCID: PMC8896058 DOI: 10.7717/peerj.12935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023] Open
Abstract
The genus Escherichia has been extensively studied and it is known to encompass a range of commensal and pathogenic bacteria that primarily inhabit the gastrointestinal tracts of warm-blooded vertebrates. However, the presence of E. coli as a model organism and potential pathogen has diverted attention away from commensal strains and other species in the genus. To investigate the diversity of Escherichia in healthy chickens, we collected fecal samples from antibiotic-free Lohmann Brown layer hens and determined the genome sequences of 100 isolates, 81 of which were indistinguishable at the HC0 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing scheme. Despite initial selection on CHROMagar Orientation medium, which is considered selective for E. coli, in silico phylotyping and core genome single nucleotide polymorphism analysis revealed the presence of at least one representative of all major clades of Escherichia, except for E. albertii, Shigella, and E. coli phylogroup B2 and cryptic clade I. The most frequent phylogenomic groups were E. coli phylogroups A and B1 and E. ruysiae (clades III and IV). We compiled a collection of reference strains isolated from avian sources (predominantly chicken), representing every Escherichia phylogroup and species, and used it to confirm the phylogeny and diversity of our isolates. Overall, the isolates carried low numbers of the virulence and antibiotic resistance genes typically seen in avian pathogenic E. coli. Notably, the clades not recovered are ones that have been most strongly associated with virulence by other studies.
Collapse
Affiliation(s)
| | - Rachel Gilroy
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom
| | - Maria Getino
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom,Department of Infection Biology, London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom,Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom,School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
5
|
Yu D, Banting G, Neumann NF. A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Can J Microbiol 2021; 67:553-571. [PMID: 33789061 DOI: 10.1139/cjm-2020-0508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Historically, bacteriologists have relied heavily on biochemical and structural phenotypes for bacterial taxonomic classification. However, advances in comparative genomics have led to greater insights into the remarkable genetic diversity within the microbial world, and even within well-accepted species such as Escherichia coli. The extraordinary genetic diversity in E. coli recapitulates the evolutionary radiation of this species in exploiting a wide range of niches (i.e., ecotypes), including the gastrointestinal system of diverse vertebrate hosts as well as non-host natural environments (soil, natural waters, wastewater), which drives the adaptation, natural selection, and evolution of intragenotypic conspecific specialism as a strategy for survival. Over the last few years, there has been increasing evidence that many E. coli strains are very host (or niche)-specific. While biochemical and phylogenetic evidence support the classification of E. coli as a distinct species, the vast genomic (diverse pan-genome and intragenotypic variability), phenotypic (e.g., metabolic pathways), and ecotypic (host-/niche-specificity) diversity, comparable to the diversity observed in known species complexes, suggest that E. coli is better represented as a complex. Herein we review the taxonomic classification of the genus Escherichia and discuss how phenotype, genotype, and ecotype recapitulate our understanding of the biology of this remarkable bacterium.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Graham Banting
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| |
Collapse
|
6
|
van der Putten BCL, Matamoros S, Mende DR, Scholl ER, consortium† COMBAT, Schultsz C. Escherichia ruysiae sp. nov., a novel Gram-stain-negative bacterium, isolated from a faecal sample of an international traveller. Int J Syst Evol Microbiol 2021; 71:004609. [PMID: 33406029 PMCID: PMC8346766 DOI: 10.1099/ijsem.0.004609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Escherichia comprises five species and at least five lineages currently not assigned to any species, termed 'Escherichia cryptic clades'. We isolated an Escherichia strain from an international traveller and resolved the complete DNA sequence of the chromosome and an IncI multidrug resistance plasmid using Illumina and Nanopore whole-genome sequencing (WGS). Strain OPT1704T can be differentiated from existing Escherichia species using biochemical (VITEK2) and genomic tests [average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH)]. Phylogenetic analysis based on alignment of 16S rRNA sequences and 682 concatenated core genes showed similar results. Our analysis further revealed that strain OPT1704T falls within Escherichia cryptic clade IV and is closely related to cryptic clade III. Combining our analyses with publicly available WGS data of cryptic clades III and IV from Enterobase confirmed the close relationship between clades III and IV (>96 % interclade ANI), warranting assignment of both clades to the same novel species. We propose Escherichia ruysiae sp. nov. as a novel species, encompassing Escherichia cryptic clades III and IV (type strain OPT1704T=NCCB 100732T=NCTC 14359T).
Collapse
Affiliation(s)
- Boas C. L. van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S. Matamoros
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - D. R. Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E. R. Scholl
- Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - COMBAT consortium†
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Abstract
Escherichia coli is a commensal of the vertebrate gut that is increasingly involved in various intestinal and extra-intestinal infections as an opportunistic pathogen. Numerous pathotypes that represent groups of strains with specific pathogenic characteristics have been described based on heterogeneous and complex criteria. The democratization of whole-genome sequencing has led to an accumulation of genomic data that render possible a population phylogenomic approach to the emergence of virulence. Few lineages are responsible for the pathologies compared with the diversity of commensal strains. These lineages emerged multiple times during E. coli evolution, mainly by acquiring virulence genes located on mobile elements, but in a specific chromosomal phylogenetic background. This repeated emergence of stable and cosmopolitan lineages argues for an optimization of strain fitness through epistatic interactions between the virulence determinants and the remaining genome.
Collapse
|
8
|
Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo CC, Chain PSG. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723. [PMID: 32015354 PMCID: PMC6997174 DOI: 10.1038/s41598-020-58356-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
There is growing interest in reconstructing phylogenies from the copious amounts of genome sequencing projects that target related viral, bacterial or eukaryotic organisms. To facilitate the construction of standardized and robust phylogenies for disparate types of projects, we have developed a complete bioinformatic workflow, with a web-based component to perform phylogenetic and molecular evolutionary (PhaME) analysis from sequencing reads, draft assemblies or completed genomes of closely related organisms. Furthermore, the ability to incorporate raw data, including some metagenomic samples containing a target organism (e.g. from clinical samples with suspected infectious agents), shows promise for the rapid phylogenetic characterization of organisms within complex samples without the need for prior assembly.
Collapse
Affiliation(s)
- Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| | - Sanaa A Ahmed
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Karen W Davenport
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Mark C Flynn
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Chien-Chi Lo
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, MS-M888, Los Alamos, NM, 87545, USA.
| |
Collapse
|
9
|
Castillo Villamizar GA, Funkner K, Nacke H, Foerster K, Daniel R. Functional Metagenomics Reveals a New Catalytic Domain, the Metallo-β-Lactamase Superfamily Domain, Associated with Phytase Activity. mSphere 2019; 4:e00167-19. [PMID: 31217298 PMCID: PMC6584368 DOI: 10.1128/msphere.00167-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022] Open
Abstract
Inositol-6-phosphate, also known as phytic acid, is a phosphorus source that plays several important roles in the phosphorus cycle and in cell metabolism. The known characterized enzymes responsible for its degradation, the phytases, are mostly derived from cultured individual microorganisms. The catalytic signatures of phytases are restricted to the molecular domains of four protein superfamilies: histidine phosphatases, protein tyrosine phosphatases, the purple acid phosphatases and the β-propeller phosphatases. During function-based screening of previously generated forest soil metagenomic libraries for Escherichia coli clones conferring phytase activity, two positive clones harboring the plasmids pLP05 and pLP12 were detected. Analysis of the insert sequences revealed the absence of classic phosphatase/phytase signatures of the proteins deduced from the putative genes, but the genes mblp01 (pLP05) and mblp02 (pLP12) encoded putative metallo-β-lactamases (MBLs). Several MBL representatives are promiscuous proteins with phosphoesterase activity, but phytase activity was previously not reported. Both mblp01 and mblp02 were subcloned, expressed, and analyzed. Mblp01 and Mblp02 are members of the lactamase B2 family. Protein modeling showed that the closest structural homologue of both proteins was ZipD of E. coli Mblp01 and Mblp02 showed activity toward the majority of the tested phosphorylated substrates, including phytate. The maximal enzyme activities were recorded for Mblp01 at 50°C under acidic conditions and for Mblp02 at 35°C and a neutral pH. In the presence of Cu2+ or SDS, the activities of Mblp01 and Mblp02 were strongly inhibited. Analyses of the minimal inhibitory concentrations of several β-lactam antibiotics revealed that recombinant E. coli cells carrying mblp01 or mblp02 showed reduced sensitivity toward β-lactam antibiotics.IMPORTANCE Phytic acid is a phosphorus storage molecule in many plant tissues, a source of phosphorus alternative to phosphate rocks, but it can also be a problematic antinutrient. In comparison to other phosphorus sources, phytic acid exhibits reduced bioavailability. Additionally, it influences functions of secondary messengers and acts as antioxidant in tumor growth prevention. The enzymatic capability to process phytate has been reported for a limited number of protein families. This might be due to the almost exclusive use of proteins derived from individual microorganisms to analyze phytase activity. With such a restriction, the study of the complexity and diversity of the phytases remains incomplete. By using metagenome-derived samples, this study demonstrates the existence of phytase activity in one of the most promiscuous superfamilies, the metallo-β-lactamases. Our results increase the general knowledge on phytase diversity in environmental samples and could provide new avenues for the study and engineering of new biocatalysts.
Collapse
Affiliation(s)
- Genis Andrés Castillo Villamizar
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Santander, Colombia
| | - Katrina Funkner
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Heiko Nacke
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Karolin Foerster
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Hinenoya A, Ichimura H, Awasthi SP, Yasuda N, Yatsuyanagi J, Yamasaki S. Phenotypic and molecular characterization of Escherichia albertii: Further surrogates to avoid potential laboratory misidentification. Int J Med Microbiol 2019; 309:108-115. [DOI: 10.1016/j.ijmm.2018.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022] Open
|
11
|
Xue JY, Zhang MY, Zhang Y, Cheng J, Liu LC, Wu YY, Zhang TY, Zhang YX. Edaphovirga cremea gen. nov., sp. nov., isolated from the rhizospheric soil of Codonopsis clematidea. J Microbiol 2019; 57:337-342. [PMID: 30806981 DOI: 10.1007/s12275-019-8408-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
Abstract
A Gram-negative, facultatively anaerobic, non-motile, nonspore- forming, coccoid or rod-shaped and creamy-pigmented bacterium, designated SYP-B2100T, was isolated from the rhizospheric soil of Codonopsis clematidea in the Xinjiang Uygur Autonomous Region, China. The optimal growth occurred at 28°C, pH 5.0, in the absence of NaCl. The cells tested positive in catalase and methyl red tests but negative in oxidase, urease, gelatinase, milk coagulation, and peptonisation, H2S production, nitrate reduction, and Voges-Proskauer tests. The major isoprenoid quinone was ubiquinone-8 (Q-8). The major cellular fatty acids were C16:0 and summed feature 8. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The 16S rRNA gene sequence of strain SYP-B2100T was the most similar to that of Rahnella inusitata DSM 30078T (96.9%) within the family Enterobacteriaceae. The genomic DNA G + C content of strain SYP-B2100T was 50.3 mol%. The combined data from the phylogenetic, morphological, physiological, biochemical, and chemotaxonomic analyses presented in this study support the conclusion that strain SYP-B2100T represents a novel species of a new genus, for which the name Edaphovirga cremea gen. nov., sp. nov. is proposed; the type strain is SYPB2100T (= CGMCC 1.5857T = DSM 105170T = KCTC 62024T).
Collapse
Affiliation(s)
- Jin-Yan Xue
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yu Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
12
|
Tomas D, Fan M, Zhu S, Klijn A. Use of biochemical miniaturized galleries, rRNA based lateral flow assay and Real Time PCR for Cronobacter spp. confirmation. Food Microbiol 2018; 76:189-195. [DOI: 10.1016/j.fm.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
13
|
|
14
|
Draft Genome Sequences of Escherichia albertii, Escherichia fergusonii, and Strains Belonging to Six Cryptic Lineages of Escherichia spp. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00271-18. [PMID: 29724828 PMCID: PMC5940954 DOI: 10.1128/genomea.00271-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report here the genome sequences of 55 strains belonging to the genus Escherichia from multiple animal and environmental sources. These strains include representatives of Escherichia albertii, Escherichia fergusonii, and six additional genetically distinct lineages of Escherichia spp., one of which is newly discovered and is being reported for the first time here.
Collapse
|
15
|
Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. INFECTION GENETICS AND EVOLUTION 2017; 54:108-127. [DOI: 10.1016/j.meegid.2017.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/02/2023]
|
16
|
Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575-5599. [DOI: 10.1099/ijsem.0.001485] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J Biosci Bioeng 2016; 122:421-6. [DOI: 10.1016/j.jbiosc.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
18
|
Abstract
In 2009, five monophyletic Escherichia clades were described and referred to as "cryptic" based on the inability to distinguish them from representative E. coli isolates using diagnostic biochemical reactions. Since this original publication, a number of studies have explored the genomic, transcriptomic, and phenotypic diversity of cryptic clade isolates to better understand their phylogenetic, physiological, and ecological distinctiveness with respect to previously named Escherichia species. This chapter reviews the original discovery of the cryptic clades, discusses available evidence that some are environmentally adapted, and evaluates current support for taxonomic designations of these microorganisms. The importance of these clades to clinical research, epidemiology, population genetics, and microbial speciation is also discussed.
Collapse
|
19
|
Abstract
After many years in the family Vibrionaceae, the genus Plesiomonas, represented by a single species, P. shigelloides, currently resides in the family Enterobacteriaceae, although its most appropriate phylogenetic position may yet to be determined. Common environmental reservoirs for plesiomonads include freshwater ecosystems and estuaries and inhabitants of these aquatic environs. Long suspected as being an etiologic agent of bacterial gastroenteritis, convincing evidence supporting this conclusion has accumulated over the past 2 decades in the form of a series of foodborne outbreaks solely or partially attributable to P. shigelloides. The prevalence of P. shigelloides enteritis varies considerably, with higher rates reported from Southeast Asia and Africa and lower numbers from North America and Europe. Reasons for these differences may include hygiene conditions, dietary habits, regional occupations, or other unknown factors. Other human illnesses caused by P. shigelloides include septicemia and central nervous system disease, eye infections, and a variety of miscellaneous ailments. For years, recognizable virulence factors potentially associated with P. shigelloides pathogenicity were lacking; however, several good candidates now have been reported, including a cytotoxic hemolysin, iron acquisition systems, and lipopolysaccharide. While P. shigelloides is easy to identify biochemically, it is often overlooked in stool samples due to its smaller colony size or relatively low prevalence in gastrointestinal samples. However, one FDA-approved PCR-based culture-independent diagnostic test system to detect multiple enteropathogens (FilmArray) includes P. shigelloides on its panel. Plesiomonads produce β-lactamases but are typically susceptible to many first-line antimicrobial agents, including quinolones and carbapenems.
Collapse
Affiliation(s)
- J Michael Janda
- Kern County Public Health Laboratory, Department of Public Health Services, Bakersfield, California, USA
| | - Sharon L Abbott
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Christopher J McIver
- Microbiology Department (SEALS), St. George Hospital, Kogarah, and School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
20
|
Sato S, Andreeßen B, Steinbüchel A. Strain and process development for poly(3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol. AMB Express 2015; 5:18. [PMID: 25852995 PMCID: PMC4385116 DOI: 10.1186/s13568-015-0105-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility. We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a). However, the cell density was rather low. In this study, we optimized the medium aiming at a more efficient PHA synthesis, and we engineered a S. blattae strain accumulating poly(3HB-co-3HP) with varying contents of the constituent 3-hydroxypropionate (3HP) depending on the cultivation conditions. Consequently, 7.12, 0.77 and 0.32 gPHA/L of poly(3HB-co-3HP) containing 2.1, 8.3 and 18.1 mol% 3HP under anaerobic/aerobic (the first 24 hours under anaerobic condition, thereafter, aerobic condition), low aeration/agitation (the minimum stirring rate required in medium mixing and small amount of aeration) and anaerobic conditions (the minimum stirring rate required in medium mixing without aeration), respectively, were synthesized from glycerol by the genetically modified S. blattae ATCC33430 strains in optimized culture medium.
Collapse
|
21
|
Andreessen B, Taylor N, Steinbüchel A. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 2014; 80:6574-82. [PMID: 25149521 PMCID: PMC4249027 DOI: 10.1128/aem.02361-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.
Collapse
Affiliation(s)
- Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nicolas Taylor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Andreeßen B, Johanningmeier B, Burbank J, Steinbüchel A. Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae. Appl Microbiol Biotechnol 2014; 98:7409-22. [PMID: 24859521 DOI: 10.1007/s00253-014-5804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Glycerol has become a cheap and abundant carbon source due to biodiesel production at a large scale, and it is available for several biotechnological applications. We recently established poly(3-hydroxypropionate) [poly(3HP)] synthesis in a recombinant Shimwellia blattae strain (Heinrich et al. Appl Environ Microbiol 79:3582-3589, 2013). The major drawbacks of the current strains are (i) low poly(3HP) yields, (ii) low plasmid stability and (iii) insufficient conversion rates. In this study, we demonstrated the influence of alterations of the operon structure, consisting of 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate:coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2 and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16. It was shown that S. blattae ATCC33430/pBBR1MCS-2::dhaT::pct::aldD::phaC1 synthesized up to 14.5 % (wtPHA/wtCDW) in a 2-L fed-batch fermentation process. Furthermore, we overcame the problem of plasmid losses during the fermentation period by engineering a carbon source-dependent plasmid addiction system in a triose phosphate isomerase knockout mutant. An assumed poly(3-hydroxyalkanoic acid) degrading activity of the lipase/esterase YbfF could not be confirmed.
Collapse
Affiliation(s)
- Björn Andreeßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany
| | | | | | | |
Collapse
|
23
|
Pseudocitrobacter gen. nov., a novel genus of the Enterobacteriaceae with two new species Pseudocitrobacter faecalis sp. nov., and Pseudocitrobacter anthropi sp. nov, isolated from fecal samples from hospitalized patients in Pakistan. Syst Appl Microbiol 2013; 37:17-22. [PMID: 24182752 DOI: 10.1016/j.syapm.2013.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022]
Abstract
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA-DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CIT(T) (=CCM 8479(T)=LMG 27751(T)) and Pseudocitrobacter anthropi sp. nov. with strain C138(T) (=CCM 8478(T)=LMG 27750(T)), as the type strains, respectively.
Collapse
|
24
|
Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups. Appl Environ Microbiol 2013; 79:5005-12. [PMID: 23770894 DOI: 10.1128/aem.01423-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli is divided into four main phylogenetic groups, which each exhibit ecological specialization. To understand the population structure of E. coli in its primary habitat, we directly assessed the relative proportions of these phylogroups from the stools of 100 healthy human subjects using a new real-time PCR method, which allows a large number of samples to be studied. The detection threshold for our technique was 0.1% of the E. coli population, i.e., 10(5) CFU/g of feces; in other methods based on individual colony analysis, the threshold is 10%. One, two, three, or four phylogenetic groups were simultaneously found in 21%, 48%, 21%, and 8% of the subjects, respectively. Phylogroups present at a threshold of less than 10% of the population were found in 40% of the subjects, revealing high within-individual diversity. Phylogroups A and B2 were detected in 74% and 70% of the subjects, respectively; phylogroups B1 and D were detected in 36% and 32%, respectively. When phylogroup B2 was dominant, it tended not to cooccur with other phylogroups. In contrast, other phylogroups were present when phylogroup A was dominant. These data indicate a complex pattern of interactions between the members of a single species within the human gut and identify a reservoir of clones that are present at a low frequency. The presence of these minor clones could explain the fluctuation in the composition of the E. coli microbiota within single individuals that may be seen over time. They could also constitute reservoirs of virulent and/or resistant strains.
Collapse
|
25
|
Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol 2013; 79:3582-9. [PMID: 23542629 PMCID: PMC3675910 DOI: 10.1128/aem.00161-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022] Open
Abstract
In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Mohamed H. Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Al-Ghamdi
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim I. Shabbaj
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Vriesekoop F, Krahl M, Hucker B, Menz G. 125thAnniversary Review: Bacteria in brewing: The good, the bad and the ugly. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.49] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Vriesekoop
- Department of Food Science and Agri-Food Supply Chain Management; Harper Adams University; Newport TF10 8NB UK
- School of Health Sciences; University of Ballarat; Ballarat Victoria Australia
| | | | - Barry Hucker
- School of Health Sciences; University of Ballarat; Ballarat Victoria Australia
| | - Garry Menz
- School of Health Sciences; University of Ballarat; Ballarat Victoria Australia
- Carlton and United Breweries; Yatala Brewery; Yatala Queensland Australia
| |
Collapse
|
27
|
Complete genome sequence of the B12-producing Shimwellia blattae strain DSM 4481, isolated from a cockroach. J Bacteriol 2012; 194:4436. [PMID: 22843577 DOI: 10.1128/jb.00829-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we announce the complete genome sequence of the coenzyme B(12)-producing enteric bacterium Shimwellia blattae (formerly Escherichia blattae). The genome consists of a single chromosome (4,158,636 bp). The genome size is smaller than that of most other enteric bacteria. Genome comparison revealed significant differences from the Escherichia coli genome.
Collapse
|
28
|
Clermont O, Gordon DM, Brisse S, Walk ST, Denamur E. Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environ Microbiol 2011; 13:2468-77. [PMID: 21651689 DOI: 10.1111/j.1462-2920.2011.02519.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strains phenotypically indistinguishable from Escherichia coli and belonging to at least five distinct cryptic lineages, named Escherichia clades I to V, that are genetically divergent from E. coli yet members of the genus have been recently found using multi-locus sequence typing (MLST). Very few epidemiological data are available on these strains as their detection by MLST is not suitable for large-scale studies. In this work, we developed a rapid PCR method based on aes and chuA allele-specific amplifications that assigns a strain a cryptic lineage membership. By screening more than 3500 strains with this approach, we show that the cryptic lineages of Escherichia are unlikely to be detected in human faecal samples (2-3% frequency) and even less likely to be isolated from extra-intestinal body sites (< 1% frequency). They are more abundant in animal faeces ranging from 3-8% in non-human mammals to 8-28% in birds. Overall, the strains from the clade V are the most abundant and from the clade II very rare. These results suggest that members of the cryptic clades are unlikely to be of significance to human and health but may influence the use of 'E. coli' as an indicator of water quality.
Collapse
|