1
|
Liu X, Chen Y, Guo Y, He S, Zhang W, Ding L. Marinicella meishanensis sp. nov., a novel Marinicella member isolated from coastal mudflat sediment of Meishan Islandin the East China Sea. Int J Syst Evol Microbiol 2024; 74. [PMID: 38787363 DOI: 10.1099/ijsem.0.006374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
A Gram-negative, rod-shaped, non-motile and strictly aerobic strain, designated NBU2979T, was isolated from a coastal mudflat located on Meishan Island in the East China Sea. Strain NBU2979T grew optimally at 32 °C, with 2.0 % NaCl (w/v) and at pH 7.0-7.5. The predominant fatty acid (>10 %) was iso-C15 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified glycolipid, two unidentified aminophospholipids, an unidentified phospholipid and an unidentified lipid. The only respiratory quinone was ubiquinone-8. Comparative analysis of 16S rRNA gene sequences showed that strain NBU2979T exhibited highest similarity to Marinicella sediminis F2T (98.0 %), Marinicella marina S1101T (97.5 %), Marinicella litoralis KMM 3900T (96.6 %), Marinicella rhabdoformis 3539T (95.5 %), Marinicella pacifica sw153T (95.2 %) and Marinicella gelatinilytica S6413T (94.9 %). Phylogenetic analyses indicated that strain NBU2979T clustered with the genus Marinicella and was closely related to strain M. sediminis F2T. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU2979T and related species of genus Marinicella were well below the threshold limit for prokaryotic species delineation. The DNA G+C content of strain NBU2979T was 51.6 mol%. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2979T (=KCTC 82911T=MCCC 1K06402T) is considered to be a representative of a novel species in the genus Marinicella, for which the name Marinicella meishanensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Xinyu Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Yaqin Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Yifan Guo
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang 315800, PR China
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, PR China
| |
Collapse
|
2
|
Zhang J, Lian FB, Gao YZ, Du ZJ, Wang MY. Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov., isolated from coastal sediment, and genome analysis and habitat distribution of the genus Marinicella. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917552 DOI: 10.1099/ijsem.0.006130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Three Marinicella strains, X102, S1101T and S6413T, were isolated from sediment samples from different coasts of Weihai, PR China. All strains were Gram-stain-negative, rod-shaped and non-motile. The predominant fatty acids of all strains were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and the major polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strains X102 and S1101T shared 100 % 16S rRNA gene sequence similarity, and strains S1101T/X102 and S6413T had 95.4 % similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strains S1101T and X102 were 99.9 and 99.2 %, respectively. Strain S1101T had ANI values of 69.1-72.9% and dDDH values of 17.9-20.5 % to members of the genus Marinicella. Strain S6413T had ANI values of 69.1-77.5% and dDDH values of 17.6-21.5 % to members of the genus Marinicella. The results of phylogenetic and comparative genomic analysis showed that the three strains belong to two novel species in the genus Marinicella, and strains X102 and S1101T represented one novel species, and strain S6413T represented another novel species. The result of BOX-PCR and genomic analysis showed that X102 and S1101T were not the same strain. The phylogenetic analyses and genomic comparisons, combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported that the three strains should be classified as representing two novel species of the genus Marinicella, for which the names Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov. are proposed, respectively. The type strains of the two novel species are S1101T (=KCTC 92642T=MCCC 1H01359T) and S6413T (=KCTC 92641T=MCCC 1H01362T), respectively. In addition, all previously described isolates of Marinicella were isolated from marine environments, but our study showed that Marinicella is also distributed in non-/low-saline habitats (e.g. animal gut, soil and indoor surface), which broadened our perception of the environmental distribution of Marinicella.
Collapse
Affiliation(s)
- Jing Zhang
- Weihai Municipal Hospital, Weihai, 264209, PR China
- Marine College, Shandong University, Weihai, 264209, PR China
| | - Feng-Bai Lian
- Marine College, Shandong University, Weihai, 264209, PR China
| | - Yi-Zhou Gao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandon University, Weihai, 264209, PR China
| | - Ming-Yi Wang
- Weihai Municipal Hospital, Weihai, 264209, PR China
| |
Collapse
|
3
|
Delacuvellerie A, Brusselman A, Cyriaque V, Benali S, Moins S, Raquez JM, Gobert S, Wattiez R. Long-term immersion of compostable plastics in marine aquarium: Microbial biofilm evolution and polymer degradation. MARINE POLLUTION BULLETIN 2023; 189:114711. [PMID: 36807047 DOI: 10.1016/j.marpolbul.2023.114711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.
Collapse
Affiliation(s)
- Alice Delacuvellerie
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium
| | - Axelle Brusselman
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium
| | - Valentine Cyriaque
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Samira Benali
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sébastien Moins
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sylvie Gobert
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium; STARESO, Pointe Revellata, BP33, 20260 Corse, France
| | - Ruddy Wattiez
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium.
| |
Collapse
|
4
|
Odobel C, Dussud C, Philip L, Derippe G, Lauters M, Eyheraguibel B, Burgaud G, Ter Halle A, Meistertzheim AL, Bruzaud S, Barbe V, Ghiglione JF. Bacterial Abundance, Diversity and Activity During Long-Term Colonization of Non-biodegradable and Biodegradable Plastics in Seawater. Front Microbiol 2021; 12:734782. [PMID: 34867851 PMCID: PMC8637277 DOI: 10.3389/fmicb.2021.734782] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The microorganisms living on plastics called "plastisphere" have been classically described as very abundant, highly diverse, and very specific when compared to the surrounding environments, but their potential ability to biodegrade various plastic types in natural conditions have been poorly investigated. Here, we follow the successive phases of biofilm development and maturation after long-term immersion in seawater (7 months) on conventional [fossil-based polyethylene (PE) and polystyrene (PS)] and biodegradable plastics [biobased polylactic acid (PLA) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or fossil-based polycaprolactone (PCL)], as well as on artificially aged or non-aged PE without or with prooxidant additives [oxobiodegradable (OXO)]. First, we confirmed that the classical primo-colonization and growth phases of the biofilms that occurred during the first 10 days of immersion in seawater were more or less independent of the plastic type. After only 1 month, we found congruent signs of biodegradation for some bio-based and also fossil-based materials. A continuous growth of the biofilm during the 7 months of observation (measured by epifluorescence microscopy and flow cytometry) was found on PHBV, PCL, and artificially aged OXO, together with a continuous increase in intracellular (3H-leucine incorporation) and extracellular activities (lipase, aminopeptidase, and β-glucosidase) as well as subsequent changes in biofilm diversity that became specific to each polymer type (16S rRNA metabarcoding). No sign of biodegradation was visible for PE, PS, and PLA under our experimental conditions. We also provide a list of operational taxonomic units (OTUs) potentially involved in the biodegradation of these polymers under natural seawater conditions, such as Pseudohongiella sp. and Marinobacter sp. on PCL, Marinicella litoralis and Celeribacter sp. on PHBV, or Myxococcales on artificially aged OXO. This study opens new routes for a deeper understanding of the polymers' biodegradability in seawaters, especially when considering an alternative to conventional fossil-based plastics.
Collapse
Affiliation(s)
- Charlene Odobel
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Claire Dussud
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Lena Philip
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France.,SAS Plastic@Sea, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Gabrielle Derippe
- CNRS, UMR 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Marion Lauters
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Boris Eyheraguibel
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gaëtan Burgaud
- CNRS, EA 3882, Université de Brest, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbionne (LUBEM), Plouzané, France
| | - Alexandra Ter Halle
- CNRS, UMR 5623, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), Université de Toulouse, Toulouse, France
| | | | - Stephane Bruzaud
- CNRS, UMR 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Valerie Barbe
- CEA, CNRS, Génomique Métabolique, Genoscope, Institut François Jacob, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Francois Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
5
|
Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of "Candidatus Scalindua"-dominated consortia treating seawater-based wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147470. [PMID: 33975101 DOI: 10.1016/j.scitotenv.2021.147470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
"Candidatus Scalindua", as known as marine anammox bacteria (MAB), was engineered to remove nitrogen from seawater-based wastewater (SWW). In this study, "Candidatus Scalindua" was successfully enriched within 106 days with marine sediments as inoculated sludge. The operating temperature was 20 ± 2 °C, and influent pH was 7.5 ± 0.1. Ammonia (NH4+-N) removal rate (ARR) was 0.53 kg/(m3·d) with the NH4+-N loading rate of 0.68 kg/(m3·d), and nitrite (NO2--N) removal rate (NRR) was 0.57 kg/(m3·d) at 0.89 kg/(m3·d) NO2--N loading rate. Nitrogen removal was negatively affected at an influent NO2- above 224 mg/L, which decreased the ARR and NRR to 0.36 and 0.31 kg/(m3·d), respectively. The genus "Ca. Scalindua" dominated the reactor, and it synergistically coexisted with Marinicella to achieve efficient nitrogen removal. This work would help to better understand the nitrogen removal properties and microbial characterization of MAB in SWW wastewater treatment under low temperature.
Collapse
Affiliation(s)
- Shuyan Yin
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Gao Y, Li J, Dong H, Qiang Z. Nitrogen removal mechanism of marine anammox bacteria treating nitrogen-laden saline wastewater in response to ultraviolet (UV) irradiation: High UV tolerance and microbial community shift. BIORESOURCE TECHNOLOGY 2021; 320:124325. [PMID: 33157444 DOI: 10.1016/j.biortech.2020.124325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Salt stress can be naturally overcome by marine anammox bacteria (MAB), while their low growth rate and sensitivity to operational conditions are still challenges for the application of anammox. To enhance the enrichment of MAB and decipher the effects of ultraviolet (UV) irradiation on MAB, UV was introduced in the nitrogen removal of MAB treating nitrogen-laden saline wastewater for the first time. The results indicated that MAB were resistant to a fairly high UV-C dose, 12000 mJ/cm2. Their relative abundance was enhanced by 1.2 folds under 12000 mJ/cm2 UV-C. However, the relative abundance of Actinobacteria, Acidobacteria, Chloroflexi and Marinicella were greatly dropped with enhanced UV-C dose. The tolerance mechanism was diversified, e.g. excessive extracellular polymeric substances, special structure of MAB and interspecific competition/cooperation. Although further study was still needed, the findings shed a light on MAB enrichment and exploited great potentials of MAB in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Sorokin DY, Mosier D, Zorz JK, Dong X, Strous M. Wenzhouxiangella Strain AB-CW3, a Proteolytic Bacterium From Hypersaline Soda Lakes That Preys on Cells of Gram-Positive Bacteria. Front Microbiol 2020; 11:597686. [PMID: 33281797 PMCID: PMC7691419 DOI: 10.3389/fmicb.2020.597686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3, was isolated from a system of hypersaline alkaline soda lakes in the Kulunda Steppe using cells of Staphylococcus aureus as growth substrate. AB-CW3's complete, circular genome was assembled from combined nanopore and Illumina sequencing and its proteome was determined for three different experimental conditions. AB-CW3 is an aerobic gammaproteobacterium feeding mainly on proteins and peptides. Unique among Wenzhouxiangella, it uses a flagellum for motility, fimbria for cell attachment and is capable of complete denitrification. AB-CW3 can use proteins derived from living or dead cells of Staphylococcus and other Gram-positive bacteria as the carbon and energy source. It encodes and expresses production of a novel Lantibiotic, a class of antimicrobial peptides which have so far only been found to be produced by Gram-positive bacteria. AB-CW3 likely excretes this peptide via a type I secretion system encoded upstream of the genes for production of the Lanthipeptide. Comparison of AB-CW3's genome to 18 other Wenzhouxiangella genomes from marine, hypersaline, and soda lake habitats indicated one or two transitions from marine to soda lake environments followed by a transition of W. marina back to the oceans. Only 19 genes appear to set haloalkaliphilic Wenzhouxiangella apart from their neutrophilic relatives. As strain AB-CW3 is only distantly related to other members of the genus, we propose to provisionally name it "Wenzhouxiangella alkaliphila".
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre for Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Zhong YL, Sun XK, Hui JG, Teng HL, Du ZJ. Marinicella rhabdoformis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2020; 70:3528-3533. [PMID: 32392121 DOI: 10.1099/ijsem.0.004210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, facultative anaerobic bacterium, designated strain 3539T, was isolated from coastal sediment of Weihai, PR China. Optimal growth occurred at 28 °C, pH 7.5-8.0 and in the presence of 3.0 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 3539T formed a robust clade with members of the genus Marinicella and was closely related to Marinicella litoralis JCM 16154T, Marinicella sediminis F2T and Marinicella pacifica sw153T with 97.7, 96.2 and 95.4 % sequence similarity, respectively. The average amino acid identity, percentage of conserved proteins, average nucleotide identity and digital DNA-DNA hybridization values between strain 3539T and M. litoralis JCM 16154T were 64.9, 68.3, 72.8 and 18.9 %, respectively. The genomic DNA G+C content of strain 3539T was 42.0 mol%. The dominant respiratory quinone was ubiquinone-8, and the major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The polar lipids of strain 3539T consisted of phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminophospholipid, one unidentified lipid and three unidentified phospholipids. Based on the combination of phylogenetic, phenotypic and chemotaxonomic data, strain 3539T is considered to represent a novel species within the genus Marinicella in he family Alcanivoracaceae, for which the name Marinicella rhabdoformis sp. nov. is proposed. The type strain of the new species is 3539T (=KCTC 72414T=MCCC 1H00388T).
Collapse
Affiliation(s)
- Yan-Lin Zhong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Xun-Ke Sun
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Jian-Gang Hui
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Hui-Ling Teng
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
9
|
Zhang X, Li X, Zhao X, Chen X, Zhou B, Weng L, Li Y. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121790. [PMID: 31818651 DOI: 10.1016/j.jhazmat.2019.121790] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Soil bioelectrochemical systems (BESs) utilize indigenous microorganisms to generate biocurrent/electric fields that stimulate the degradation of organic pollutants, exhibiting great potential in the removal of petroleum hydrocarbons from soils. In this study, a horizontal bioelectric field was constructed to investigate the conversion of carbon and nitrogen in a soil BES. After 182 days, the degradation rates of total petroleum hydrocarbons, alkanes, and aromatics were promoted by 52 %, 38% and 136%, respectively. Meanwhile, the bioelectric field accelerated NH4+-N production near the cathode, whereas NH4+-N consumption near the anode indicated that the bioelectric field promoted the cathode-dominated ammoniation process and the anode-dominated denitrification process. Additionally, a distinctive microbial community was formed under the bioelectric field, and the improved degradation on the cathode and the anode relied on special functional bacteria (typically, cathode, Alcanivorax; anode, Marinobacter). The dramatic enrichment in anodic denitrifying bacteria, including Pontibacillus, Sediminimonas, Georgenia, etc., explained the enhanced denitrification process under the bioelectric field. This study simultaneously clarified the carbon and nitrogen conversion processes and corresponding bacterial community occurring under the bioelectric field for the first time, helping to form regulation strategies in the practical application of soil BESs and providing a new perspective for removing petroleum hydrocarbons from soils.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Kokoulin M, Lizanov IN, Romanenko LA, Chikalovets IV. Structure of phosphorylated and sulfated polysaccharides from lipopolysaccharide of marine bacterium Marinicella litoralis KMM 3900T. Carbohydr Res 2020; 490:107961. [DOI: 10.1016/j.carres.2020.107961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
|
11
|
Villemur R, Payette G, Geoffroy V, Mauffrey F, Martineau C. Dynamics of a methanol-fed marine denitrifying biofilm: 2-impact of environmental changes on the microbial community. PeerJ 2019; 7:e7467. [PMID: 31423359 PMCID: PMC6697039 DOI: 10.7717/peerj.7467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed, marine denitrification system is composed of a multi-species microbial community, among which Hyphomicrobium nitrativorans and Methylophaga nitratireducenticrescens are the principal bacteria involved in the denitrifying activities. To assess its resilience to environmental changes, the biofilm was cultivated in artificial seawater (ASW) under anoxic conditions and exposed to a range of specific environmental conditions. We previously reported the impact of these changes on the denitrifying activities and the co-occurrence of H. nitrativorans strain NL23 and M. nitratireducenticrescens in the biofilm cultures. Here, we report the impact of these changes on the dynamics of the overall microbial community of the denitrifying biofilm. METHODS The original biofilm (OB) taken from the denitrification system was cultivated in ASW under anoxic conditions with a range of NaCl concentrations, and with four combinations of nitrate/methanol concentrations and temperatures. The OB was also cultivated in the commercial Instant Ocean seawater (IO). The bacterial diversity of the biofilm cultures and the OB was determined by 16S ribosomal RNA gene sequences. Culture approach was used to isolate other denitrifying bacteria from the biofilm cultures. The metatranscriptomes of selected biofilm cultures were derived, along with the transcriptomes of planktonic pure cultures of H. nitrativorans strain NL23 and M. nitratireducenticrescens strain GP59. RESULTS High proportions of M. nitratireducenticrescens occurred in the biofilm cultures. H. nitrativorans strain NL23 was found in high proportion in the OB, but was absent in the biofilm cultures cultivated in the ASW medium at 2.75% NaCl. It was found however in low proportions in the biofilm cultures cultivated in the ASW medium at 0-1% NaCl and in the IO biofilm cultures. Denitrifying bacterial isolates affiliated to Marinobacter spp. and Paracoccus spp. were isolated. Up regulation of the denitrification genes of strains GP59 and NL23 occurred in the biofilm cultures compared to the planktonic pure cultures. Denitrifying bacteria affiliated to the Stappia spp. were metabolically active in the biofilm cultures. CONCLUSIONS These results illustrate the dynamics of the microbial community in the denitrifying biofilm cultures in adapting to different environmental conditions. The NaCl concentration is an important factor affecting the microbial community in the biofilm cultures. Up regulation of the denitrification genes of M. nitratireducenticrescens strain GP59 and H. nitrativorans strain NL23 in the biofilm cultures suggests different mechanisms of regulation of the denitrification pathway in the biofilm. Other denitrifying heterotrophic bacteria are present in low proportions, suggesting that the biofilm has the potential to adapt to heterotrophic, non-methylotrophic environments.
Collapse
Affiliation(s)
- Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | - Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | | |
Collapse
|
12
|
Brailo M, Schreier HJ, McDonald R, Maršić-Lučić J, Gavrilović A, Pećarević M, Jug-Dujaković J. Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2019; 503:198-206. [PMID: 30778266 PMCID: PMC6376983 DOI: 10.1016/j.aquaculture.2018.12.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An experimental recirculating aquaculture system was constructed under ambient seawater conditions to compare microbial community diversity of nitrifying and denitrifying biofilters that were derived from a commercial inoculum used for aquarium applications. Next generation sequencing revealed distinct and diverse microbial communities in samples analyzed from the commercial inoculant and the denitrification and nitrification biofilters. In all samples, communities were represented by a few dominant operational taxonomic units (OTUs). Bacteria having the capacity to carry out ammonia and nitrite oxidation were more abundant in the nitrification biofilter. Similarly, the proportion of the bacterial taxa known to carry out heterotrophic and autotrophic denitrification and participate in sulfur cycling were found in the denitrification bioreactor, and likely originated from the ambient environmental water source. Our results indicated that environmental seawater can be a favorable enhancement to the bacterial consortium of recirculating aquaculture systems biofilters.
Collapse
Affiliation(s)
- Marina Brailo
- Department of Aquaculture, University of Dubrovnik, Ćira Carića 4, Dubrovnik 20000, Croatia
| | - Harold J. Schreier
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt St., Baltimore, MD 21202, USA
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ryan McDonald
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Jasna Maršić-Lučić
- Institute of Oceanography and Fisheries, PO Box 500, Šetalište Ivana Meštrovića 63, Split 21000, Croatia
| | - Ana Gavrilović
- Department of Fisheries, Beekeeping, Game Management and Special Zoology, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, Zagreb 10000, Croatia
| | - Marijana Pećarević
- Department of Aquaculture, University of Dubrovnik, Ćira Carića 4, Dubrovnik 20000, Croatia
| | - Jurica Jug-Dujaković
- Sustainable Aquaculture Systems Inc., 715 Pittstown Road, Frenchtown, NJ 08825, USA
| |
Collapse
|
13
|
Wang XQ, Li CM, Dunlap CA, Rooney AP, Du ZJ. Marinicella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:2335-2339. [PMID: 29781795 DOI: 10.1099/ijsem.0.002839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped, pale yellow, non-motile and non-spore-forming bacterium, designated strain F2T, was isolated from marine sediment collected from the Weihai coast, Shandong Province, PR China. Optimal growth occurred at 33 °C (range, 10-37 °C), with 3.0-4.0 % (w/v) NaCl (1.0-8.0 %) and at pH 7.5-8.0 (pH 6.5-9.0). Q-8 was the sole respiratory quinone. The major polar lipids of strain F2T were phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and two unidentified polar lipids. The major cellular fatty acid in strain F2T was iso-C15 : 0. The genomic DNA G+C content of the strain was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that strain F2T is most closely related to Marinicella litoralis JCM 16154T (97.5 %) and Marinicella pacifica sw153T (96.0 %). Based on the results of our polyphasic analysis, we conclude that strain F2T represents a novel species of the genus Marinicella, for which the name Marinicella sediminis sp. nov. is proposed. The type strain of the new species is F2T (=KCTC 42953T=MCCC 1H00149T).
Collapse
Affiliation(s)
- Xiao-Qun Wang
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Chang-Ming Li
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China
| |
Collapse
|
14
|
Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Appl Environ Microbiol 2017; 84:AEM.01443-17. [PMID: 29054869 DOI: 10.1128/aem.01443-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
The difficulty involved in quantifying biogeochemically significant microbes in marine sediments limits our ability to assess interspecific interactions, population turnover times, and niches of uncultured taxa. We incubated surface sediments from Cape Lookout Bight, North Carolina, USA, anoxically at 21°C for 122 days. Sulfate decreased until day 68, after which methane increased, with hydrogen concentrations consistent with the predicted values of an electron donor exerting thermodynamic control. We measured turnover times using two relative quantification methods, quantitative PCR (qPCR) and the product of 16S gene read abundance and total cell abundance (FRAxC, which stands for "fraction of read abundance times cells"), to estimate the population turnover rates of uncultured clades. Most 16S rRNA reads were from deeply branching uncultured groups, and ∼98% of 16S rRNA genes did not abruptly shift in relative abundance when sulfate reduction gave way to methanogenesis. Uncultured Methanomicrobiales and Methanosarcinales increased at the onset of methanogenesis with population turnover times estimated from qPCR at 9.7 ± 3.9 and 12.6 ± 4.1 days, respectively. These were consistent with FRAxC turnover times of 9.4 ± 5.8 and 9.2 ± 3.5 days, respectively. Uncultured Syntrophaceae, which are possibly fermentative syntrophs of methanogens, and uncultured Kazan-3A-21 archaea also increased at the onset of methanogenesis, with FRAxC turnover times of 14.7 ± 6.9 and 10.6 ± 3.6 days. Kazan-3A-21 may therefore either perform methanogenesis or form a fermentative syntrophy with methanogens. Three genera of sulfate-reducing bacteria, Desulfovibrio, Desulfobacter, and Desulfobacterium, increased in the first 19 days before declining rapidly during sulfate reduction. We conclude that population turnover times on the order of days can be measured robustly in organic-rich marine sediment, and the transition from sulfate-reducing to methanogenic conditions stimulates growth only in a few clades directly involved in methanogenesis, rather than in the whole microbial community.IMPORTANCE Many microbes cannot be isolated in pure culture to determine their preferential growth conditions and predict their response to changing environmental conditions. We created a microcosm of marine sediments that allowed us to simulate a diagenetic profile using a temporal analog for depth. This allowed for the observation of the microbial community population dynamics caused by the natural shift from sulfate reduction to methanogenesis. Our research provides evidence for the population dynamics of uncultured microbes as well as the application of a novel method of turnover rate analysis for individual taxa within a mixed incubation, FRAxC, which stands for "fraction of read abundance times cells," which was verified by quantitative PCR. This allows for the calculation of population turnover times for microbes in a natural setting and the identification of uncultured clades involved in geochemical processes.
Collapse
|
15
|
Zeng YX, Yu Y, Li HR, Luo W. Prokaryotic Community Composition in Arctic Kongsfjorden and Sub-Arctic Northern Bering Sea Sediments As Revealed by 454 Pyrosequencing. Front Microbiol 2017; 8:2498. [PMID: 29312204 PMCID: PMC5732994 DOI: 10.3389/fmicb.2017.02498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022] Open
Abstract
Fjords and continental shelves represent distinct marine ecosystems in the pan-arctic region. Kongsfjorden is a glacial fjord that is located on the west coast of Svalbard, and is influenced by both Atlantic and Arctic water masses. The Bering Sea consists of a huge continental shelf in the northeast and a deep ocean basin in the southwest, and is influenced by Pacific water. Microbial community compositions of Arctic sediment samples BJ4 from outer basin and BJ36 from inner basin of Kongsfjorden and sub-Arctic samples NEC5 from shallow shelf and DBS1 from deep basin region of the northern Bering Sea were investigated using 454 pyrosequencing of archaeal and bacterial 16S rRNA genes. Most archaeal sequences in the sediments were related to Thaumarchaeota, though Euryarchaeota were more abundant in the Arctic glacier-influencing inner basin sediment BJ36. Thaumarchaeota Group C3 was the dominant archaeal population in all samples. Proteobacteria and Bacteroidetes dominated the sediment bacterial communities. Acidobacteria and Actinobacteria were also dominant in the northern Bering Sea samples. Alphaproteobacteria and Epsilonproteobacteria were the two main classes in Kongsfjorden sediment bacterial communities while Deltaproteobacteria and Gammaproteobacteria were dominant in the northern Bering Sea sediments. Differences in the presence and abundance of other dominant archaeal and bacterial populations were observed among sediment samples. In contrast to archaeal community differences that the Arctic BJ36 archaeal community was distinct from the sub-Arctic sediments and the Arctic outer basin sediment BJ4, cluster analysis based on bacterial OTU (operational taxonomic unit) distributions indicated that the Arctic and sub-Arctic bacterial communities segregated from one another. These results suggest that the sediment archaeal and bacterial community compositions can be driven by different environmental factors. Differences in the presence and abundance of particular archaeal species (e.g., Candidatus Nitrosopumilus and Methanococcoides) or bacterial species (e.g., Sulfurimonas, Sulfurovum, and Desulfobulbaceae) involved in biogeochemical cycles were also observed among sediment samples. At the same time, despite the community variation, some phylotypes (e.g., Marinicella) were dominant in all sediments. This study indicates diverse microbial communities inhabiting pan-arctic marine sediments, and highlights potential roles for Archaea and Bacteria in global biogeochemical cycles in these environments.
Collapse
Affiliation(s)
- Yin-Xin Zeng
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai, China
| | - Yong Yu
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai, China
| | - Hui-Rong Li
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai, China
| | - Wei Luo
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Liu Y, Zhang Z, Zheng Y, Zhang XH. Marinicella pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:2313-2318. [DOI: 10.1099/ijsem.0.001027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yanan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zenghu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanfen Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
17
|
Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME JOURNAL 2016; 10:2447-58. [PMID: 27022994 PMCID: PMC5030689 DOI: 10.1038/ismej.2016.36] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/29/2016] [Accepted: 02/07/2016] [Indexed: 11/14/2022]
Abstract
Little research has been conducted on microbial diversity deep under the Earth's surface. In this study, the microbial communities of three deep terrestrial subsurface aquifers were investigated. Temporal community data over 6 years revealed that the phylogenetic structure and community dynamics were highly dependent on the degree of isolation from the earth surface biomes. The microbial community at the shallow site was the most dynamic and was dominated by the sulfur-oxidizing genera Sulfurovum or Sulfurimonas at all-time points. The microbial community in the meteoric water filled intermediate aquifer (water turnover approximately every 5 years) was less variable and was dominated by candidate phylum OD1. Metagenomic analysis of this water demonstrated the occurrence of key genes for nitrogen and carbon fixation, sulfate reduction, sulfide oxidation and fermentation. The deepest water mass (5000 year old waters) had the lowest taxon richness and surprisingly contained Cyanobacteria. The high relative abundance of phylogenetic groups associated with nitrogen and sulfur cycling, as well as fermentation implied that these processes were important in these systems. We conclude that the microbial community patterns appear to be shaped by the availability of energy and nutrient sources via connectivity to the surface or from deep geological processes.
Collapse
|
18
|
Shoji T, Sueoka K, Satoh H, Mino T. Identification of the microbial community responsible for thiocyanate and thiosulfate degradation in an activated sludge process. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Fagervold SK, Urios L, Intertaglia L, Batailler N, Lebaron P, Suzuki MT. Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2013; 63:2700-2705. [DOI: 10.1099/ijs.0.045575-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, cream-pigmented, non-motile, non-spore-forming straight rod, strain MOLA115T, was isolated from a coastal water sample from the Mediterranean Sea. On the basis of phylogenetic analysis of the 16S rRNA gene sequences, strain MOLA115T was shown to belong to the
Gammaproteobacteria
, adjacent to members of the genera
Marinicella
,
Arenicella
and
Kangiella
, sharing less than 89 % 16S rRNA gene sequence similarity with strains of all recognized species within the
Gammaproteobacteria
. The only isoprenoid quinone was ubiquinone-8. Polar lipids in strain MOLA115T included phosphatidylethanolamine, an aminolipid, phosphatidylglycerol and an aminophospholipid. Fatty acid analysis revealed iso-C15 : 0 and iso-C17 : 1ω9c to be the dominant components. The DNA G+C content was 44.5 mol%. Based upon the phenotypic and phylogenetic data, we propose that strain MOLA115T should be considered to represent a novel species in a new genus, for which the name Pleionea mediterranea gen. nov., sp. nov. is proposed. The type strain of Pleionea mediterranea is MOLA115T ( = CIP 110343T = DSM 25350T).
Collapse
Affiliation(s)
- Sonja K. Fagervold
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l’Adour, IPREM UMR 5254, Equipe Environnement et Microbiologie, IBEAS, F-64013 PAU, France
| | - Laurent Intertaglia
- CNRS, UMS 2348, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Nicole Batailler
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Philippe Lebaron
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Marcelino T. Suzuki
- CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66650, Banyuls/Mer, France
- UPMC Université Paris 6, UMS 2348, UMR 7621, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| |
Collapse
|
20
|
Meziti A, Mente E, Kormas KA. Gut bacteria associated with different diets in reared Nephrops norvegicus. Syst Appl Microbiol 2012; 35:473-82. [PMID: 23040460 DOI: 10.1016/j.syapm.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022]
Abstract
The impact of different diets on the gut microbiota of reared Nephrops norvegicus was investigated based on bacterial 16S rRNA gene diversity. Specimens were collected from Pagasitikos Gulf (Greece) and kept in experimental rearing tanks, under in situ conditions, for 6months. Treatments included three diets: frozen natural (mussel) food (M), dry formulated pellet (P) and starvation (S). Gut samples were collected at the initiation of the experiment, and after 3 and 6months. Tank water and diet samples were also analyzed for bacterial 16S rRNA gene diversity. Statistical analysis separated the two groups fed or starved (M and P vs. S samples). Most gut bacteria were not related to the water or diet bacteria, while bacterial diversity was higher in the starvation samples. M and P samples were dominated by Gammaproteobacteria, Epsilonproteobacteria and Tenericutes. Phylotypes clustering in Photobacterium leiognathi, Shewanella sp. and Entomoplasmatales had high frequencies in the M and P samples but low sequence frequencies in S samples. The study showed that feeding resulted in the selection of specific species, which also occurs in the natural population, and might be associated with the animal's nutrition.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | | | | |
Collapse
|