1
|
Paulinetti AP, Guerieri FF, Augusto IMG, Lazaro CZ, Albanez R, Lovato G, Ratusznei SM, Domingues Rodrigues JA. Thermophilic and mesophilic anaerobic digestion of soybean molasses: A performance vs. stability trade-off. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122508. [PMID: 39366238 DOI: 10.1016/j.jenvman.2024.122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
One of the factors that has a direct impact on anaerobic digestion is the applied organic loading rate (OLRA). Increasing OLRA can boost methane production but can also cause process failure. As a result, establishing the appropriate OLRA for the procedure is critical. This study evaluated the effect of increasing the OLRA using soybean molasses in a thermophilic anaerobic reactor (R-Thermo), as well as the effect of feeding strategy and co-processing with okara. Furthermore, the performance versus stability trade-off between R-Thermo and mesophilic anaerobic digestion (R-Meso) was investigated. The increase of OLRA from 10 to 15 and 20 kg-COD/m³/d led to a decrease in COD removal efficiency (90, 86, and 75%), methane yield (12.0, 11.6, and 9.9 mol-CH4/kg-COD) and an increase in total volatile acids concentration (251, 456, and 1393 mg-HAc/L, respectively). At 15 kg-COD/m³/d, R-Meso performed similarly to R-Thermo, and at 20 kg-COD/m3/d, R-Meso outperformed (81% COD removal efficiency, 9.3 mol-CH4/kg-CODrem and 154.5 mol-CH4/m3/d). Temperature greatly influenced the distribution of metabolic pathways, as shown by thermodynamic and kinetic analyses, thus impacting bacterial diversity. At 55 °C, amongst the bacterial genera, Tepidiphilus stood out (>28.2%), followed by Acetomicrobium, Coprothermobacter and Candidatus_Caldatribacterium. The OLRA clearly impacted the archaeal community; Methanothermobacter (77.4%) was favored over Methanosarcina (14.8%). Under thermophilic temperature, it seems that syntrophic acetate oxidation (SAO) bacteria might have competed for substrate with acetoclastic methanogens, while in R-Meso microorganisms responsible for the initial steps of organic matter breakdown, such as members of the Firmicutes and Proteobacteria phyla (at least 67%), were dominant. In summary, R-Meso, characterized by a more uniform distribution of metabolic pathways, as well as a diverse and well-adapted microbial consortium, have exhibited enhanced stability and outperformed R-Thermo at high-loads.
Collapse
Affiliation(s)
- Ana Paula Paulinetti
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Fernanda Furtunato Guerieri
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Isabela Mehi Gaspari Augusto
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil; Department of Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400 - Zip Code 13.566-590, São Carlos/SP, Brazil
| | - Carolina Zampol Lazaro
- Department of Microbiology, Infectiology and Immunology, University of Montreal, H3C 3J7, Montreal/Quebec, Canada
| | - Roberta Albanez
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Giovanna Lovato
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| | - Suzana Maria Ratusznei
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil.
| | - José Alberto Domingues Rodrigues
- Department of Chemical Engineering, Mauá School of Engineering, Mauá Institute of Technology, Praça Mauá 1, Zip Code 09.580-900, São Caetano do Sul/SP, Brazil
| |
Collapse
|
2
|
Singh A, Moestedt J, Berg A, Schnürer A. Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Front Microbiol 2021; 12:700256. [PMID: 34484143 PMCID: PMC8415747 DOI: 10.3389/fmicb.2021.700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Moestedt
- Tekniska Verken i Linköping AB, Department R&D, Linköping, Sweden
| | | | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Sheinman M, Arkhipova K, Arndt PF, Dutilh BE, Hermsen R, Massip F. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. eLife 2021; 10:62719. [PMID: 34121661 PMCID: PMC8270642 DOI: 10.7554/elife.62719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis of 93,481 bacterial genomes identified 138,273 HGT events. We developed a model to explain their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals that long-distance HGT is frequent: our results indicate that HGT between species from different phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of sequences strongly impacts their transfer rate, which varies by more than three orders of magnitude between different functional categories. Overall, we provide a comprehensive view of HGT, illuminating a fundamental process driving bacterial evolution.
Collapse
Affiliation(s)
- Michael Sheinman
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands.,Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Peter F Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Florian Massip
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany.,Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villleurbanne, France
| |
Collapse
|
4
|
Navarro RR, Otsuka Y, Matsuo K, Sasaki K, Sasaki K, Hori T, Habe H, Nakamura M, Nakashimada Y, Kimbara K, Kato J. Combined simultaneous enzymatic saccharification and comminution (SESC) and anaerobic digestion for sustainable biomethane generation from wood lignocellulose and the biochemical characterization of residual sludge solid. BIORESOURCE TECHNOLOGY 2020; 300:122622. [PMID: 31891856 DOI: 10.1016/j.biortech.2019.122622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Simultaneous enzymatic saccharification and comminution (SESC) was used for large-scale anaerobic digestion of wood lignocellulose to generate methane and unmodified lignin. During SESC, 10% aqueous mixture of powdered debarked wood from various species was subjected to bead milling with hydrolytic enzymes to generate particles below 1 μm. This slurry was directly used as a cosubstrate for anaerobic digestion in a 500 L stirred-tank reactor. Temperature and hydraulic retention time (HRT) were maintained at 50 °C and 30 days, respectively. At stable operation periods, an average yield of 224 L of methane per kg of cedar was attained. Comparable yields were achieved with red pine, elm, oak, and cedar bark. High-throughput microbial analysis established the presence of a relevant community to support the elevated level of methane production. The stability of the unmodified lignin in anaerobic digestion was also confirmed, allowing for its recovery as an important by-product.
Collapse
Affiliation(s)
- Ronald R Navarro
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Yuichiro Otsuka
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Kenji Matsuo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Kei Sasaki
- Departmemt of Food, Agriculture and Bio-Recycling, Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1 Nakano Aki-ku, Hiroshima 739-0321, Japan
| | - Ken Sasaki
- Departmemt of Food, Agriculture and Bio-Recycling, Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1 Nakano Aki-ku, Hiroshima 739-0321, Japan
| | - Tomoyuki Hori
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
| | - Masaya Nakamura
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Naka-ku, Hamamatsu 432-8561, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
5
|
Taylor HN, Warner EE, Armbrust MJ, Crowley VM, Olsen KJ, Jackson RN. Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease. RNA Biol 2019; 16:1438-1447. [PMID: 31232162 DOI: 10.1080/15476286.2019.1634965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic CRISPR-Cas adaptive immune systems rely on small non-coding RNAs derived from CRISPR loci to recognize and destroy complementary nucleic acids. However, the mechanism of Type IV CRISPR RNA (crRNA) biogenesis is poorly understood. To dissect the mechanism of Type IV CRISPR RNA biogenesis, we determined the x-ray crystal structure of the putative Type IV CRISPR associated endoribonuclease Cas6 from Mahella australiensis (Ma Cas6-IV) and characterized its enzymatic activity with RNA cleavage assays. We show that Ma Cas6-IV specifically cleaves Type IV crRNA repeats at the 3' side of a predicted stem loop, with a metal-independent, single-turnover mechanism that relies on a histidine and a tyrosine located within the putative endonuclease active site. Structure and sequence alignments with Cas6 orthologs reveal that although Ma Cas6-IV shares little sequence homology with other Cas6 proteins, all share common structural features that bind distinct crRNA repeat sequences. This analysis of Type IV crRNA biogenesis provides a structural and biochemical framework for understanding the similarities and differences of crRNA biogenesis across multi-subunit Class 1 CRISPR immune systems.
Collapse
Affiliation(s)
- Hannah N Taylor
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Emily E Warner
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Valerie M Crowley
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| |
Collapse
|
6
|
Varjani SJ, Gnansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. BIORESOURCE TECHNOLOGY 2017; 245:1258-1265. [PMID: 28844839 DOI: 10.1016/j.biortech.2017.08.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems.
Collapse
Affiliation(s)
- Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Sun L, Liu T, Müller B, Schnürer A. The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:128. [PMID: 27330562 PMCID: PMC4912747 DOI: 10.1186/s13068-016-0543-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/02/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Materials rich in lignocellulose, such as straw, are abundant, cheap and highly interesting for biogas production. However, the complex structure of lignocellulose is difficult for microbial cellulolytic enzymes to access, limiting degradation. The rate of degradation depends on the activity of members of the microbial community, but the knowledge of this community in the biogas process is rather limited. This study, therefore, investigated the degradation rate of cellulose and straw in batch cultivation test initiated with inoculums from four co-digestion biogas plants (CD) and six wastewater treatment plants (WWTP). The results were correlated to the bacterial community by 454-pyrosequencing targeting 16S rRNA gene and by T-RFLP analysis targeting genes of glycoside hydrolase families 5 (cel5) and 48 (cel48), combined with construction of clone libraries. RESULTS UniFrac principal coordinate analysis of 16S rRNA gene amplicons revealed a clustering of WWTPs, while the CDs were more separated from each other. Bacteroidetes and Firmicutes dominated the community with a comparably higher abundance of the latter in the processes operating at high ammonia levels. Sequences obtained from the cel5 and cel 48 clone libraries were also mainly related to the phyla Firmicutes and Bacteroidetes and here ammonia was a parameter with a strong impact on the cel5 community. The results from the batch cultivation showed similar degradation pattern for eight of the biogas plants, while two characterised by high ammonia level and low bacterial diversity, showed a clear lower degradation rate. Interestingly, two T-RFs from the cel5 community were positively correlated to high degradation rates of both straw and cellulose. One of the respective partial cel5 sequences shared 100 % identity to Clostridium cellulolyticum. CONCLUSION The degradation rate of cellulose and straw varied in the batch tests dependent on the origin of the inoculum and was negatively correlated with the ammonia level. The cellulose-degrading community, targeted by analysis of the glycoside hydrolase families 5 (cel5) and 48 (cel48), showed a dominance of bacteria belonging the Firmicutes and Bacteriodetes, and a positive correlation was found between the cellulose degradation rate of wheat straw with the level of C. cellulolyticum.
Collapse
Affiliation(s)
- Li Sun
- />Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, 750 07 Uppsala, Sweden
| | - Tong Liu
- />Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, 750 07 Uppsala, Sweden
| | - Bettina Müller
- />Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- />Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, 750 07 Uppsala, Sweden
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, 1432 Ås, Norway
| |
Collapse
|
8
|
Niu Q, Kobayashi T, Takemura Y, Kubota K, Li YY. Evaluation of functional microbial community's difference in full-scale and lab-scale anaerobic digesters feeding with different organic solid waste: Effects of substrate and operation factors. BIORESOURCE TECHNOLOGY 2015; 193:110-118. [PMID: 26119052 DOI: 10.1016/j.biortech.2015.05.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Samples taken from the full-scale and lab-scale anaerobic digesters feeding with different organic solid waste were investigated with assessment of the substrate effects. To understand the substrate effects on the microbial community diversity, heterogeneity, and functional structure, twelve samples were analyzed by constructing 16S rRNA gene clone libraries and statistical analysis. Microbial diversity varied according to substrate types and operating parameters. With acetoclastic methanogen of genus Methanosaeta predominated in full scale and Methanosarcina predominated in the lab-scale digesters, a significant difference archaeal communities were found. Principal component analysis clearly indicates that both bacterial and archaeal communities create independent clusters according to substrate types. However, the relationship between acetogenic bacteria and the acetoclastic methanogens had a similar variation tends in most of full-scale and lab-scale reactors. Canonical correlation analysis and variance partitioning analysis implied that bacterial and archaeal community variations were significantly affected by substrate and the operation conditions.
Collapse
Affiliation(s)
- Qigui Niu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takuro Kobayashi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Yasuyuki Takemura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
9
|
Wetzels SU, Mann E, Metzler-Zebeli BU, Wagner M, Klevenhusen F, Zebeli Q, Schmitz-Esser S. Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats. J Dairy Sci 2015; 98:5572-87. [PMID: 26051320 DOI: 10.3168/jds.2014-9166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/19/2015] [Indexed: 12/26/2022]
Abstract
Ecological balance in the rumen is highly sensitive to concentrate-rich diets. Yet the effects of these feeding practices on the caprine bacterial epimural microbiome (CBEM), a microbial community with putative important physiological functions in the rumen, are largely unexplored. This study aimed to investigate the effect of dietary concentrate amount on ruminal CBEM. Seventeen growing goats were fed diets with 0 [n=5; 6.2MJ of metabolizable energy (ME)/d], 30 (n=6; 7.3MJ of /d), or 60% (n=6; 10.2MJ of ME/d) concentrate for 6 wk. Two hours after their last feeding, goats were euthanized and tissue samples of the ventral rumen wall were collected, washed in phosphate-buffered saline to detach loosely attached bacteria, and stored at -20°C for further processing. Genomic DNA was isolated from thawed rumen mucosa samples and used for Roche/454 Life Science (Branford, CT) 16S rRNA gene amplicon pyrosequencing yielding 122,458 reads. Pyrosequencing data were clustered into 1,879 operational taxonomic units (OTU; 0.03 distance level). Pyrosequencing revealed Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetes as the most abundant phyla (97.7%). Compared with the 30% group, both the 60 and 0% concentrate groups harbored significantly more Firmicutes and SR1, respectively. On an OTU level, a Bergeriella-related OTU was most abundant in the CBEM, followed by 2 Campylobacter OTU, which responded differently to diets: 1 OTU was significantly increased whereas the other significantly decreased with highest concentrate amount in the diet. At the genus level, the 0% concentrate group harbored increased Kingella-like sequences compared with the other feeding groups. Furthermore, the 0% concentrate group tended to have more Bergeriella than the 30 and 60% concentrate groups. The genus Bergeriella was significantly decreased in the 60% feeding group compared with the other diets. In conclusion, this is the first report of CBEM using deep-sequencing methods on the genus and OTU level, and our study revealed major shifts in the CBEM in response to concentrate-rich diets with potential health relevance in goats.
Collapse
Affiliation(s)
- S U Wetzels
- Institute of Animal Nutrition and Functional Plant Compounds, 1210 Vienna, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria
| | - E Mann
- Institute for Milk Hygiene, Milk Technology and Food Science, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria
| | - B U Metzler-Zebeli
- Research Cluster Animal Gut Health, 1210 Vienna, Austria; University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - M Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria
| | - F Klevenhusen
- Institute of Animal Nutrition and Functional Plant Compounds, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria
| | - S Schmitz-Esser
- Institute for Milk Hygiene, Milk Technology and Food Science, 1210 Vienna, Austria; Research Cluster Animal Gut Health, 1210 Vienna, Austria.
| |
Collapse
|
10
|
Fu L, He Y, Xu F, Ma Q, Wang F, Xu J. Characterization of a novel thermostable patatin-like protein from a Guaymas basin metagenomic library. Extremophiles 2015; 19:829-40. [DOI: 10.1007/s00792-015-0758-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
|
11
|
Niu Q, Qiao W, Qiang H, Li YY. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. BIORESOURCE TECHNOLOGY 2013; 146:223-233. [PMID: 23934339 DOI: 10.1016/j.biortech.2013.07.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 05/19/2023]
Abstract
The thermophilic methane fermentation of chicken manure (10% TS) was investigated within a wide range of ammonia. Microbiological analysis showed significant shifts in Archaeal and Bacterial proportions with VFA accmulation and CH4 formation before and after inhibition. VFA accumulated sharply with lower methane production, 0.29 L/g VS, than during the steady stage, 0.32 L/g VS. Biogas production almost ceased with the synergy inhibition of TAN (8000 mg/L) and VFA (25,000 mg/L). Hydrogenotrophic Methanothermobacter thermautotrophicus str. was the dominate archaea with 95% in the inhibition stage and 100% after 40 days recovery compared to 9.3% in the steady stage. Aceticlastic Methanosarcina was not encountered with coincided phenomenal of high VFA in the inhibition stage as well as recovery stage. Evaluation of the microbial diversity and functional bacteria indicated the dominate phylum of Firmicutes were 94.74% and 84.4% with and without inhibition. The microbial community shifted significantly with elevated ammonia concentration affecting the performance.
Collapse
Affiliation(s)
- Qigui Niu
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wei Qiao
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Hong Qiang
- College of Resources and Environment Northwest A&F University, Yangling 712100, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
12
|
Swithers KS, Soucy SM, Lasek-Nesselquist E, Lapierre P, Gogarten JP. Distribution and Evolution of the Mobile vma-1b Intein. Mol Biol Evol 2013; 30:2676-87. [DOI: 10.1093/molbev/mst164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Wentzel A, Lewin A, Cervantes FJ, Valla S, Kotlar HK. Deep Subsurface Oil Reservoirs as Poly-extreme Habitats for Microbial Life. A Current Review. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Starting Up Microbial Enhanced Oil Recovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 142:1-94. [DOI: 10.1007/10_2013_256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Sikorski J, Teshima H, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Pitluck S, Liolios K, Pagani I, Ivanova N, Huntemann M, Mavromatis K, Ovchinikova G, Pati A, Tapia R, Han C, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Ngatchou-Djao OD, Rohde M, Pukall R, Spring S, Abt B, Göker M, Detter JC, Woyke T, Bristow J, Markowitz V, Hugenholtz P, Eisen JA, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of Mahella australiensis type strain (50-1 BON). Stand Genomic Sci 2011; 4:331-41. [PMID: 21886860 PMCID: PMC3156404 DOI: 10.4056/sigs.1864526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreover, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacteraceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
16
|
|
17
|
Abstract
Thermophilic anaerobes are Archaea and Bacteria that grow optimally at temperatures of 50 degrees C or higher and do not require the use of O(2) as a terminal electron acceptor for growth. The prokaryotes with this type of physiology are studied for a variety of reasons, including (a) to understand how life can thrive under extreme conditions, (b) for their biotechnological potential, and (c) because anaerobic thermophiles are thought to share characteristics with the early evolutionary life forms on Earth. Over 300 species of thermophilic anaerobes have been described; most have been isolated from thermal environments, but some are from mesobiotic environments, and others are from environments with temperatures below 0 degrees C. In this overview, the authors outline the phylogenetic and physiological diversity of thermophilic anaerobes as currently known. The purpose of this overview is to convey the incredible diversity and breadth of metabolism within this subset of anaerobic microorganisms.
Collapse
Affiliation(s)
- Isaac D Wagner
- 212 Biological Sciences Building, 1000 Cedar Street, University of Georgia, Athens, GA 30602-2605, USA
| | | |
Collapse
|