1
|
González-Salazar LA, Quezada M, Rodríguez-Orduña L, Ramos-Aboites H, Capon RJ, Souza-Saldívar V, Barona-Gomez F, Licona-Cassani C. Biosynthetic novelty index reveals the metabolic potential of rare actinobacteria isolated from highly oligotrophic sediments. Microb Genom 2023; 9:mgen000921. [PMID: 36748531 PMCID: PMC9973853 DOI: 10.1099/mgen.0.000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Calculations predict that testing of 5 000-10 000 molecules and >1 billion US dollars (£0.8 billion, £1=$1.2) are required for one single drug to come to the market. A solution to this problem is to establish more efficient protocols that reduce the high rate of re-isolation and continuous rediscovery of natural products during early stages of the drug development process. The study of 'rare actinobacteria' has emerged as a possible approach for increasing the discovery rate of drug leads from natural sources. Here, we define a simple genomic metric, defined as biosynthetic novelty index (BiNI), that can be used to rapidly rank strains according to the novelty of the subset of encoding biosynthetic clusters. By comparing a subset of high-quality genomes from strains of different taxonomic and ecological backgrounds, we used the BiNI score to support the notion that rare actinobacteria encode more biosynthetic gene cluster (BGC) novelty. In addition, we present the isolation and genomic characterization, focused on specialized metabolites and phenotypic screening, of two isolates belonging to genera Lentzea and Actinokineospora from a highly oligotrophic environment. Our results show that both strains harbour a unique subset of BGCs compared to other members of the genera Lentzea and Actinokineospora. These BGCs are responsible for potent antimicrobial and cytotoxic bioactivity. The experimental data and analysis presented in this study contribute to the knowledge of genome mining analysis in rare actinobacteria and, most importantly, can serve to direct sampling efforts to accelerate early stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Luz A González-Salazar
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Michelle Quezada
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lorena Rodríguez-Orduña
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valeria Souza-Saldívar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanza (LANGEBIO), Cinvestav-IPN, Irapuato, Mexico.,Present address: Microbial Diversity and Specialized Metabolism Laboratory, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Cuauhtémoc Licona-Cassani
- Industrial Genomics Laboratory, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Nuevo León, Mexico.,Division of Integrative Biology, Institute for Obesity Research, Tecnológico de Monterrey, Nuevo León, Mexico
| |
Collapse
|
2
|
Shi X, Huang L, Song K, Zhao G, Liu Y, Lv L, Du Y. Enzymatic Tailoring in Luzopeptin Biosynthesis Involves Cytochrome P450‐Mediated Carbon–Nitrogen Bond Desaturation for Hydrazone Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| | - Liming Huang
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Kaihui Song
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Yu Liu
- College of Life Sciences Zhejiang University 310058 Hangzhou China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| |
Collapse
|
3
|
Shi X, Huang L, Song K, Zhao G, Liu Y, Lv L, Du YL. Enzymatic Tailoring in Luzopeptin Biosynthesis Involves Cytochrome P450-Mediated Carbon-Nitrogen Bond Desaturation for Hydrazone Formation. Angew Chem Int Ed Engl 2021; 60:19821-19828. [PMID: 34180113 DOI: 10.1002/anie.202105312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Luzopeptins and related decadepsipeptides are bisintercalator nonribosomal peptides featuring rare acyl-substituted tetrahydropyridazine-3-carboxylic acid (Thp) subunits that are critical to their biological activities. Herein, we reconstitute the biosynthetic tailoring pathway in luzopeptin A biosynthesis through in vivo genetic and in vitro biochemical approaches. Significantly, we revealed a multitasking cytochrome P450 enzyme that catalyzes four consecutive oxidations including the highly unusual carbon-nitrogen bond desaturation, forming the hydrazone-bearing 4-OH-Thp residues. Moreover, we identified a membrane-bound acyltransferase that likely mediates the subsequent O-acetylation extracellularly, as a potential self-protective strategy for the producer strain. Further genome mining of novel decadepsipeptides and an associated P450 enzyme have provided mechanistic insights into the P450-mediated carbon-nitrogen bond desaturation. Our results not only reveal the molecular basis of pharmacophore formation in bisintercalator decadepsipeptides, but also expand the catalytic versatility of P450 family enzymes.
Collapse
Affiliation(s)
- Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Liming Huang
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Kaihui Song
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| |
Collapse
|
4
|
Ping M, Yun-Lin Z, Jun L, Jian G, Zheng-Gang X. Proposal of Lentzea deserti (Okoro et al. 2010) Nouioui et al. 2018 as a later heterotypic synonym of Lentzea atacamensis (Okoro et al. 2010) Nouioui et al. 2018 and an emended description of Lentzea atacamensis. PLoS One 2021; 16:e0246533. [PMID: 33539471 PMCID: PMC7861442 DOI: 10.1371/journal.pone.0246533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
The taxonomic relationship of Lentzea atacamensis and Lentzea deserti were re-evaluated using comparative genome analysis. The 16S rRNA gene sequence analysis indicated that the type strains of L. atacamensis and L. deserti shared 99.7% sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the genomes of two type strains were 88.6% and 98.8%, respectively, greater than the two recognized thresholds values of 70% dDDH and 95-96% ANI for bacterial species delineation. These results suggested that L. atacamensis and L. deserti should share the same taxonomic position. And this conclusion was further supported by similar phenotypic and chemotaxonomic features between them. Therefore, we propose that L. deserti is a later heterotypic synonym of L. atacamensis.
Collapse
Affiliation(s)
- Mo Ping
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhao Yun-Lin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Liu Jun
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Gao Jian
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Xu Zheng-Gang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front Microbiol 2021; 11:583120. [PMID: 33488536 PMCID: PMC7821382 DOI: 10.3389/fmicb.2020.583120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| | - Helena Gimeno-Valero
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
6
|
Cao C, Yuan B, Qin S, Jiang J, Tao F, Lian B. Lentzea pudingi sp. nov., isolated from a weathered limestone sample in a karst area. Int J Syst Evol Microbiol 2017; 67:4873-4878. [PMID: 29022551 DOI: 10.1099/ijsem.0.002400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, aerobic bacterium, designated strain DHS C021T, was isolated from a limestone sample collected from the Puding Karst Ecosystem Research Station of Guizhou Province, southwest China. This strain developed branched vegetative mycelia, and its aerial mycelia fragmented into rod-shaped spores. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the whole-cell sugars comprised galactose, ribose and mannose. The respiratory quinone was identified as menaquinone MK-9(H4). The major cellular fatty acids were iso-C14 : 0 and iso-C16 : 0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyl-phosphatidyethanolamine, phosphatidylinositol, phosphotidylinositolmannosides and one unidentified phospholipid. The genomic DNA G+C content was 69.8 mol% and 16S rRNA gene sequence analysis showed that the strain belonged to the genus Lentzea and shared highest sequence similarity with Lentzeaalbida CGMCC 4.1727T (98.8 %) and Lentzea waywayandensis CGMCC 4.1646T (98.5 %). However, it could be distinguished from these reference strains based on the low levels of DNA-DNA relatedness (54.5±2.7 and 41.7±3.2 %, respectively). On the basis of morphological, chemotaxonomic and phylogenetic characteristics, and DNA-DNA hybridization data, strain DHS C021T represents a novel species of the genus Lentzea, for which the name Lentzeapudingi sp. nov. is proposed. The type strain is DHS C021T (=CGMCC 4.7319T=KCTC 39694T).
Collapse
Affiliation(s)
- Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.,State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, PR China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Faxiang Tao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, PR China
| | - Bin Lian
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| |
Collapse
|
7
|
Cao CL, Zhou XQ, Qin S, Tao FX, Jiang JH, Lian B. Lentzea guizhouensis sp. nov., a novel lithophilous actinobacterium isolated from limestone from the Karst area, Guizhou, China. Antonie van Leeuwenhoek 2015; 108:1365-1372. [PMID: 26377575 DOI: 10.1007/s10482-015-0589-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
Abstract
A novel filamentous actinobacterium, designated strain DHS C013(T), was isolated from limestone collected in Guizhou Province, South-west China. Morphological and chemotaxonomic characteristics of the strain support its assignment to the genus Lentzea. Phylogenetic analyses showed that strain DHS C013(T) is closely related to Lentzea jiangxiensis FXJ1.034(T) (98.7 % 16S rRNA gene similarity) and Lentzea flaviverrucosa 4.0578(T) (98.0 % 16S rRNA gene similarity), but it can be distinguished from these strains based on low levels of DNA:DNA relatedness (~44 and ~37 %, respectively). Physiological and biochemical tests also allowed phenotypic differentiation of the novel strain from these closely related species. On the basis of the evidence presented here, strain DHS C013(T) is concluded to represent a novel species of the genus Lentzea, for which the name Lentzea guizhouensis sp. nov. is proposed. The type strain is DHS C013(T) (=KCTC 29677(T) = CGMCC 4.7203(T)).
Collapse
Affiliation(s)
- Cheng-Liang Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiao-Qi Zhou
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Fa-Xiang Tao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, People's Republic of China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China
| | - Bin Lian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, People's Republic of China. .,College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 2015; 81:3086-103. [PMID: 25724963 DOI: 10.1128/aem.03859-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 12/29/2022] Open
Abstract
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds.
Collapse
|