1
|
Fang J, Liao S, Gu T, Lu W, Lu X, Yu M, Li B, Ye J. Efficient nitrogen removal by heterotrophic nitrification-aerobic denitrification yeast Candida boidinii L21: Performance, pathway and application. BIORESOURCE TECHNOLOGY 2024; 414:131621. [PMID: 39393649 DOI: 10.1016/j.biortech.2024.131621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Efficient nitrogen removal yeasts are rarely encountered. Here, a heterotrophic nitrification-aerobic denitrification strain of Candida boidinii L21 was isolated. The optimal removal conditions for strain L21 were glucose as carbon source, C/N of 15, salinity of 10 ppt, pH of 7, shaking speed of 120 rpm, and temperature of 30 °C. Strain L21 removed NH4+-N, NO2--N, NO3--N (14---140 mg/L) and achieved nearly complete NO2--N, removal. Nitrogen balance and enzyme activity analysis indicated the nitrogen removal pathway of strain L21 through assimilation, nitrification, and denitrification pathways. When applied in wastewater and sludge, strain L21 reduced inorganic nitrogen levels within 4 days, with a 58-fold increase in nitrite removal compared to controls. These findings demonstrate that strain L21 holds great potential for enhancing nitrogen removal in wastewater treatment processes, providing valuable insights for improving environmental management practices.
Collapse
Affiliation(s)
- Jinkun Fang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Shaoan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Tengpeng Gu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Weihao Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohan Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Mianrong Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Binxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China.
| |
Collapse
|
2
|
Feng CY, He HH, Li S, Zheng ZH, Mo YJ, Lian WH, Lu CY, Zhang DY, Li WJ, Dong L. Desertibaculum subflavum gen. nov., sp. nov., a novel member of the family Sneathiellaceae isolated from the Kumtag Desert soil. Antonie Van Leeuwenhoek 2024; 117:108. [PMID: 39080041 DOI: 10.1007/s10482-024-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/15/2024] [Indexed: 10/16/2024]
Abstract
A novel rod-shaped bacterium, designated as strain SYSU D60015T that formed yellowish colonies was isolated from a sandy soil collected from the Kumtag Desert in Xinjiang, China. Cells were Gram-stain-negative, oxidase-positive, catalase-negative and motile with a single polar flagellum. Growth optimum occurred between 28 and 37 °C, pH 7.0 and with 0-0.5% (W/V) NaCl. The predominant cellular fatty acids (> 5%) were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C19:0 cyclo ω8c, C18:1 ω7c 11-methyl and C16:0. The polar lipid profile contained one phosphatidylethanolamine, one diphosphatidylglycerol, one phosphatidylglycerol, one unidentified phospholipid, three unidentified aminolipids, two unidentified aminophospholipids and seven unidentified lipids. The only respiratory quinone was ubiquinone-10. Based on 16S rRNA gene sequence phylogenetic analysis, strain SYSU D60015T was found to form a distinct linage within the family Sneathiellaceae, and had 16S rRNA gene sequence similarities of 90.8% to Taonella mepensis H1T, and 90.2% to Ferrovibrio denitrificans S3T. The genome of SYSU D60015T was 5.66 Mb in size with 68.2% of DNA G + C content. The low digital DNA-DNA hybridization (dDDH, 18.0%), average nucleotide identity (ANI, 77.5%) and amino acid identity (AAI, 56.0%) values between SYSU D60015T and Ferrovibrio terrae K5T indicated that SYSU D60015T might represent a distinct genus. Based on the phylogenetic, phenotypic, chemotaxonomic and genomic data, we propose Desertibaculum subflavum gen. nov., sp. nov. as a novel species of a new genus within the family Sneathiellaceae. The type strain is SYSU D60015T (= NBRC 112952T = CGMCC 1.16256T).
Collapse
Affiliation(s)
- Chu-Ying Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Huan-Huan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Zhuo-Huan Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yi-Jun Mo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) BiotechLtd., Guangzhou, 510700, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
3
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
4
|
Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides: microbial resources, metabolic pathways and catabolic enzymes. World J Microbiol Biotechnol 2018; 34:117. [DOI: 10.1007/s11274-018-2503-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
|
5
|
Yu XY, Tao TY, Fu GY, Su Y, Han SB, Wang RJ, Wu M, Sun C. Marinibaculum pumilum gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:4844-4849. [DOI: 10.1099/ijsem.0.001439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiao-Yun Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tian-Yi Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ge-Yi Fu
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Yue Su
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Shuai-Bo Han
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rui-Jun Wang
- Ocean College, Zhejiang University, Zhoushan 316000, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cong Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
6
|
Sheu SY, Chen YL, Young CC, Chen WM. Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:4797-4804. [DOI: 10.1099/ijs.0.055145-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated LTC-2T was isolated from a freshwater lake in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain LTC-2T were Gram-reaction-negative, facultatively anaerobic, poly-β-hydroxybutyrate-accumulating, motile by means of a monopolar flagellum, non-spore-forming, slightly curved rods surrounded by a thick capsule and formed creamy white colonies. Growth occurred at 10–37 °C (optimum, 20–30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and with 0–1.0 % NaCl (optimum, 0 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major isoprenoid quinone was Q-10 and the DNA G+C content was 58.5 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, two uncharacterized phospholipids and two uncharacterized aminophospholipids. The major polyamines were putrescine, homospermidine and spermidine. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain LTC-2T forms a distinct lineage with respect to closely related genera in the family
Rhodospirillaceae
, most closely related to the genera
Elstera
and
Dongia
, and the levels of 16S rRNA gene sequence similarity with respect to the type species of related genera were less than 94 %. On the basis of the genotypic and phenotypic data, strain LTC-2T represents a novel genus and species of the family
Rhodospirillaceae
, for which the name Lacibacterium aquatile gen. nov., sp. nov. is proposed. The type strain is LTC-2T ( = BCRC 80445T = LMG 26999T = KCTC 32017T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Yi-Ling Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Chiu-Chung Young
- College of Agriculture and Natural Resources, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Wen-Ming Chen
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142 Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|