1
|
Loperena-Barber M, Elizalde-Bielsa A, Salvador-Bescós M, Ruiz-Rodríguez P, Pellegrini JM, Renau-Mínguez C, Lancaster R, Zúñiga-Ripa A, Iriarte M, Bengoechea JA, Coscollá M, Gorvel JP, Moriyón I, Conde-Álvarez R. "Phylogenomic insights into brucellaceae: The Pseudochrobactrum algeriensis case". INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105625. [PMID: 38906517 DOI: 10.1016/j.meegid.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Aitor Elizalde-Bielsa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Paula Ruiz-Rodríguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | | | - Chantal Renau-Mínguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Rebecca Lancaster
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mireia Coscollá
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille University, Marseille, France
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Yang Y, Xu Z, Yang L, Hu MY, Jiang GY, Chen J, Yang YC, Tian Y. Ochrobactrum chromiisoli sp. nov., Isolated from Chromium-Contaminated Soil. Curr Microbiol 2023; 81:50. [PMID: 38150064 DOI: 10.1007/s00284-023-03562-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
A Gram-stain-negative, non-spore-forming, flagellated, motile, aerobic, rod-shaped bacteria strain, designated YY2XT, was isolated from chromium-contaminated soil. Phylogenetic analysis based on 16S rRNA gene, recA gene, and whole genome indicated that the strain represented a new member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. The phylogenetic trees based on 16 s rRNA gene, revealed that Falsochrobactrum ovis DSM26720T (96.7%), Ochrobactrum gallinifaecis DSM15295T (96.2%), and Pseudochrobactrum asaccharolyticum DSM25619T (96.2%) are the most closely related phylogenetic neighbors of strain YY2XT. The draft genome of YY2XT was approximately 4,650,646 bp in size with a G + C content of 53.0 mol%. Average nucleotide identity and digital DNA-DNA hybridization values among strain YY2XT and the selected Brucellaceae species were 71.4-83.1% and 13.5-42.7%, which are below the recommended cut-off values for species delineation. Growth of strain YY2XT occurred within pH 5-10 (optimum, pH 7-8), 4 ℃-42 °C (optimum, 30 °C), and NaCl concentrations of 0.0-6.0% (optimum, 1.0%). Major quinone system was ubiquinone 10, the major fatty acids were C16:0, C18:1ω7c, and C16:1ω7c and the major polyamines were spermidine and putrescine. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, and four undefined lipids. On the basis of the phenotypic, genotypic and chemotaxonomic traits, strain YY2XT was considered to represent a novel species of the genus Ochrobactrum, for which the name Ochrobactrum chromiisoli sp. nov. is proposed. The type strain is YY2XT (= CCTCC AB 2023035T = JCM 36000T).
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Li Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng-Yao Hu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guang-Yang Jiang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jia Chen
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi-Chen Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
3
|
Hu M, Zhang F, Li G, Ruan H, Li X, Zhong L, Chen G, Rui Y. Falsochrobactrum tianjinense sp. nov., a New Petroleum-Degrading Bacteria Isolated from Oily Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11833. [PMID: 36142106 PMCID: PMC9517009 DOI: 10.3390/ijerph191811833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The microbial remediation technology had great potential and attracted attention to total petroleum hydrocarbon pollution (TPH) remediation, but its efficiency is limited by its application in the field. In this study, a new TPH-degrading strain, TDYN1, was isolated from contaminated oil soil in Dagang Oilfield in Tianjin, China, and identified as Falsochrobactrum sp. by 16S rRNA sequence analysis. The physiological characterization of the isolate was observed. The orthogonal experiment was carried out for the optimum degradation conditions to improve its biodegradation efficiency. The strain was the gram-stain-negative, short rod-shaped, non-spore-forming, designated Falsochrobactrum tianjinense sp. nov (strain TDYN1); it had 3.51 Mb, and the DNA G + C content of the strain was 56.0%. The degradation rate of TDYN1 was 69.95% after 7 days of culture in optimal degradation conditions (temperature = 30 °C, pH = 8, salinity = 10 g L-1, petroleum concentration = 1 g L-1, and the inoculation dose of strain TDYN1 = 6%) and also reached more than 30% under other relatively extreme conditions. It suggested that the TDYN1 has great potential for TPH remediation in the soils of North China.
Collapse
Affiliation(s)
- Mengjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Feifan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Gaoyuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Haihua Ruan
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinhao Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yichao Rui
- Rodale Institute, Kutztown, PA 19530, USA
| |
Collapse
|
4
|
Ashford RT, Muchowski J, Koylass M, Scholz HC, Whatmore AM. Application of Whole Genome Sequencing and Pan-Family Multi-Locus Sequence Analysis to Characterize Relationships Within the Family Brucellaceae. Front Microbiol 2020; 11:1329. [PMID: 32760355 PMCID: PMC7372191 DOI: 10.3389/fmicb.2020.01329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/25/2020] [Indexed: 11/13/2022] Open
Abstract
The bacterial family Brucellaceae is currently composed of seven genera, including species of the genus Brucella, a number of which are significant veterinary and zoonotic pathogens. The bacteriological identification of pathogenic Brucella spp. may be hindered by their close phenotypic similarity to other members of the Brucellaceae, particularly of the genus Ochrobactrum. Additionally, a number of novel atypical Brucella taxa have recently been identified, which exhibit greater genetic diversity than observed within the previously described species, and which share genomic features with organisms outside of the genus. Furthermore, previous work has indicated that the genus Ochrobactrum is polyphyletic, raising further questions regarding the relationship between the genus Brucella and wider Brucellaceae. We have applied whole genome sequencing (WGS) and pan-family multi-locus sequence analysis (MLSA) approaches to a comprehensive panel of Brucellaceae type strains, in order to characterize relationships within the family. Phylogenies based on WGS core genome alignments were able to resolve phylogenetic relationships of 31 non-Brucella spp. type strains from within the family, alongside type strains of twelve Brucella species. A phylogeny based on concatenated pan-family MLSA data was largely consistent with WGS based analyses. Notably, recently described atypical Brucella isolates were consistently placed in a single clade with existing species, clearly distinct from all members of the genus Ochrobactrum and wider family. Both WGS and MLSA methods closely grouped Brucella spp. with a sub-set of Ochrobactrum species. However, results also confirmed that the genus Ochrobactrum is polyphyletic, with seven species forming a separate grouping. The pan-family MLSA scheme was subsequently applied to a panel of 50 field strains of the family Brucellaceae, isolated from a wide variety of sources. This analysis confirmed the utility of the pan-Brucellaceae MLSA scheme in placing field isolates in relation to recognized type strains. However, a significant number of these isolates did not cluster with currently identified type strains, suggesting the existence of additional taxonomic diversity within some members of the Brucellaceae. The WGS and pan-family MLSA approaches applied here provide valuable tools for resolving the identity and phylogenetic relationships of isolates from an expanding bacterial family containing a number of important pathogens.
Collapse
Affiliation(s)
- Roland T Ashford
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Jakub Muchowski
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Mark Koylass
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Holger C Scholz
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Adrian M Whatmore
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
5
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
6
|
Leclercq SO, Cloeckaert A, Zygmunt MS. Taxonomic Organization of the Family Brucellaceae Based on a Phylogenomic Approach. Front Microbiol 2020; 10:3083. [PMID: 32082266 PMCID: PMC7002325 DOI: 10.3389/fmicb.2019.03083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
Deciphering the evolutionary history of pathogenic bacteria and their near neighbors may help to understand the genetic or ecological bases which led to their pathogenic behavior. The Brucellaceae family comprises zoonotic pathogenic species belonging to the genus Brucella as well as the environmental genus Ochrobactrum for which some species are considered as opportunistic pathogens. Here, we used a phylogenomic approach including a set of 145 Brucellaceae genomes representative of the family diversity and more than 40 genomes of the order Rhizobiales to infer the taxonomic relationships between the family’s species. Our results clarified some unresolved phylogenetic ambiguities, conducting to the exclusion of Mycoplana spp. out of the family Brucellaceae and the positioning of all Brucella spp. as a single genomic species within the current Ochrobactrum species diversity. Additional analyses also revealed that Ochrobactrum spp. separate into two clades, one comprising mostly environmental species while the other one includes the species considered as pathogens (Brucella spp.) or opportunistic pathogens (mainly O. anthropi, O. intermedium, and O. pseudintermedium). Finally, we show that O. intermedium is undergoing a beginning of genome reduction suggestive of an ongoing ecological niche specialization, and that some lineages of O. intermedium and O. anthropi may shift toward an adaption to the human host.
Collapse
Affiliation(s)
| | - Axel Cloeckaert
- INRA, Infectiologie et Santé Publique, Université de Tours, Nouzilly, France
| | - Michel S Zygmunt
- INRA, Infectiologie et Santé Publique, Université de Tours, Nouzilly, France
| |
Collapse
|
7
|
Sun L, Yao L, Gao X, Huang K, Bai N, Lyu W, Chen W. Falsochrobactrum shanghaiense sp. nov., isolated from paddy soil and emended description of the genus Falsochrobactrum. Int J Syst Evol Microbiol 2019; 69:778-782. [PMID: 30652966 DOI: 10.1099/ijsem.0.003236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-spore-forming, motile, Gram-stain-negative, short rod-shaped strain, designated HN4T, was isolated from a paddy soil sample collected in Shanghai, China. A comparative analysis o-f 16S rRNA gene sequences showed that strain HN4T fell within the genus Falsochrobactrum, forming a clear cluster with the type strain of Falsochrobactrum ovis, with which it exhibited a 16S rRNA gene sequence similarity value of 98.2 %. Strain HN4T grew optimally at pH 7.0, 30-35 °C and in the presence of 1 % (w/v) NaCl. It was positive for oxidase activity. Chemotaxonomic analysis showed that strain HN4T contained ubiquinone-10 as the predominant respiratory quinone and possessed summed feature 8(C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0cyclo ω8c as predominant fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The DNA G+C content was 56.9 mol%. Strain HN4T exhibited a DNA-DNA relatedness level of 18±1 % with Falsochrobactrum ovis CCM 8460T. Based on the data obtained in this study, strain HN4T represents a novel species of the genus Falsochrobactrum, for which the name Falsochrobactrumshanghaiense sp. nov. is proposed. The type strain is HN4T (=JCM 32785T=CCTCC AB 2018063T).
Collapse
Affiliation(s)
- Lina Sun
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 2Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
| | - Li Yao
- 3College of Marine and Bio-Engineering, Yancheng Teachers University, Yancheng,Jiangsu 210095, PR China
| | - Xinhua Gao
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 4Shanghai Key Laboratory of Horticultural Technology, Shanghai, 201403, PR China
| | - Kaihua Huang
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 5Environmental Protection Monitoring Station of Shanghai, Shanghai, 201403, PR China
| | - Naling Bai
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 6Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
| | - Weiguang Lyu
- 6Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 2Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
| | - Wei Chen
- 1Eco-Environmental Protection Research Institute Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- 5Environmental Protection Monitoring Station of Shanghai, Shanghai, 201403, PR China
| |
Collapse
|