1
|
Yin J, He M, Liu XX, Ren CB, Liu HH, Luo H, Chen G, Wang ZF, Debnath SC, Wang PM, Chen HX, Zheng DQ. Peteryoungia algae sp. nov. isolated from seaweeds of Gouqi Island, China, and its unique genetic features among Peteryoungia strains. Antonie Van Leeuwenhoek 2024; 117:112. [PMID: 39133351 DOI: 10.1007/s10482-024-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
A Gram-stain-negative, light khaki, strictly aerobic, rod-shaped, motile via multiple flagella, and catalase- and oxidase-positive bacterium, designated as SSM4.3T, was isolated from the seaweed of Gouqi Island in the East China Sea. The novel isolate grows at 0-5.0% NaCl concentrations (w/v) (optimum 1%), pH 5.0-9.0 (optimum pH 7.0), and 15-37 °C (optimum 30 °C). The 16S rRNA gene sequences-based phylogeny indicates that the novel marine isolate belongs to the family Rhizobiaceae and that it shared the greatest sequence similarity (98.9%) with Peteryoungia rhizophila CGMCC 1.15691T. This classification was also supported by phylogenetic analysis using core genes. The predominant fatty acids (≥ 10%) of the strain were identified as C18:1 ω7c/C18:1 ω6c. Q-10 was identified as the major isoprenoid quinone, with trace levels of Q-9 present. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The complete genome size of strain SSM4.3T is 4.39 Mb with a DNA G+C content of 61.3%. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between the genomes of strain SSM4.3T and its closely related representatives were 74.80-86.93%, 20.00-32.30%, and 70.30-91.52%, respectively. Phylogenetic analysis, grounded on the core genes, reveals the evolutionary relationship between SSM4.3T and other Peteryoungia strains. Pan-genomics analysis of 8 previously classified Peteryoungia species and SSM4.3T revealed their unique genetic features and functions. Overall, strain SSM4.3T was considered to be a new species of the Peteryoungia genus; the name Peteryoungia algae sp. nov. has been proposed, with type strain SSM4.3T (= LMG 32561 = MCCC 1K07170).
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
| | - Min He
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Xiao-Xiao Liu
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Chang-Bin Ren
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Hou-Hong Liu
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Hai Luo
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Gen Chen
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Sanjit Chandra Debnath
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, EX4 4HB, UK
| | - Pin-Mei Wang
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
| | | | - Dao-Qiong Zheng
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China.
- Hainan Institute of Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
2
|
Zhang Y, Chen Y, Penttinen P, Wang X, Quan Y, Wen L, Yang M, Zhang X, Chen Q, Zhang L, Zhang J, Zhang X, Xu K. Ciceribacter sichuanensis sp. nov., a plant growth promoting rhizobacterium isolated from root nodules of soybean in Sichuan, China. Antonie Van Leeuwenhoek 2024; 117:46. [PMID: 38427093 DOI: 10.1007/s10482-024-01941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
The fast-growing rhizobia-like strains S101T and S153, isolated from root nodules of soybean (Glycine max) in Sichuan, People's Republic of China, underwent characterization using a polyphasic taxonomy approach. The strains exhibited growth at 20-40 °C (optimum, 28 °C), pH 4.0-10.0 (optimum, pH 7.0) and up to 2.0% (w/v) NaCl (optimum, 0.01%) on Yeast Mannitol Agar plates. The 16S rRNA gene of strain S101T showed 98.4% sequence similarity to the closest type strain, Ciceribacter daejeonense L61T. Major cellular fatty acids in strain S101T included summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The predominant quinone was ubiquinone-10. The polar lipids of strain S101T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethyl ethanolamine, phosphatidyl ethanolamine, amino phospholipid, unidentified phosphoglycolipid and unidentified amino-containing lipids. The DNA G + C contents of S101T and S153 were 61.1 and 61.3 mol%, respectively. Digital DNA-DNA hybridization relatedness and average nucleotide identity values between S101T and C. daejeonense L61T were 46.2% and 91.4-92.2%, respectively. In addition, strain S101T promoted the growth of soybean and carried nitrogen fixation genes in its genome, hinting at potential applications in sustainable agriculture. We propose that strains S101T and S153 represent a novel species, named Ciceribacter sichuanensis sp. nov., with strain S101T as the type strain (= CGMCC 1.61309 T = JCM 35649 T).
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yuanxue Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Quan
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Licheng Wen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Miao Yang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, People's Republic of China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Kaiwei Xu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
3
|
Ma T, Xue H, Piao C, Jiang N, Li Y. Phylogenomic reappraisal of the family Rhizobiaceae at the genus and species levels, including the description of Ectorhizobium quercum gen. nov., sp. nov. Front Microbiol 2023; 14:1207256. [PMID: 37601364 PMCID: PMC10434624 DOI: 10.3389/fmicb.2023.1207256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The family Rhizobiaceae contains 19 validly described genera including the rhizobia groups, many of which are important nitrogen-fixing bacteria. Early classification of Rhizobiaceae relied heavily on the poorly resolved 16S rRNA genes and resulted in several taxonomic conflicts. Although several recent studies illustrated the taxonomic status of many members in the family Rhizobiaceae, several para- and polyphyletic genera still needed to be elucidated. The rapidly increasing number of genomes in Rhizobiaceae has allowed for a revision of the taxonomic identities of members in Rhizobiaceae. In this study, we performed analyses of genome-based phylogeny and phylogenomic metrics to review the relationships of 155-type strains within the family Rhizobiaceae. The UBCG and concatenated protein phylogenetic trees, constructed based on 92 core genes and concatenated alignment of 170 single-copy orthologous proteins, demonstrated that the taxonomic inconsistencies should be assigned to eight novel genera, and 22 species should be recombined. All these reclassifications were also confirmed by pairwise cpAAI values, which separated genera within the family Rhizobiaceae with a demarcation threshold of ~86%. In addition, along with the phenotypic and chemotaxonomic analyses, a novel strain BDR2-2T belonging to a novel genus of the family Rhizobiaceae was also confirmed, for which the name Ectorhizobium quercum gen. nov., sp. nov. was proposed. The type strain is BDR2-2T (=CFCC 16492T = LMG 31717T).
Collapse
Affiliation(s)
| | | | | | | | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Wang XN, Wang L, He W, Yang Q, Zhang DF. Description of Flavimaribacter sediminis gen. nov., sp. nov., a New Member of the Family Rhizobiaceae Isolated from Marine Sediment. Curr Microbiol 2023; 80:301. [PMID: 37493780 DOI: 10.1007/s00284-023-03402-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
A novel Gram-staining-negative, aerobic and rod-shaped bacterium, designated WL0058T, was isolated from coastal sediment sample collected in Nantong city, Jiangsu province of China (120° 51' 13″ E, 32° 6' 26″ N) in October 2020. Strain WL0058T was found to grow at 4-37 °C (optimum, 28 °C) with 1.5-4.0% NaCl (optimum, 4.0%) and displayed alkaliphilic growth with the pH range of pH 6.0-10.0 (optimum, pH 6.0). Phylogenetic trees constructed based on 16S rRNA gene sequence indicated that strain WL0058T is a member of the family Rhizobiaceae, shared the highest similarity with "Hoeflea prorocentri" CCTCC AB 2016294T (97.7%) and constituted a sub-cluster within the family with it, while the similarity with others in the family Rhizobiaceae was lower than 97.0%. The G + C content of genomic DNA was 59.5 mol%. Polar lipids profile of strain WL0058T included phosphatidylcholine (PC), phosphatidylethanolamine (PE), and glycolipid (GL), phosphatidylmonomethylethanolamine (PME) and two unidentified polar lipids (L). The major isoprenoid quinone was determined to be Q-10 and the major fatty acids were C16:0, C18:0, summed features 4 (iso-C17:1 and/or anteiso-C17:1), and summed features 8 (C18:1ω6c and/or C18:1ω7c). As inferred from the morphology, physiology, and biochemical analysis, genotypic characteristics, and the phylogenetic trees, strain WL0058T ought to be recognized as a novel genus in the family Rhizobiaceae, for which the name Flavimaribacter sediminis gen. nov., sp. nov. The type strain of Flavimaribacter sediminis gen. nov., sp. nov. is WL0058T (= MCCC 1K06063T = JCM 34659T = GDMCC 1.2448T).
Collapse
Affiliation(s)
- Xiang-Ning Wang
- Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Lu Wang
- Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China
| | - Wei He
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China
| | - Qiao Yang
- Laboratory of Marine Environment and Ecology, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Dao-Feng Zhang
- Institute of Marine Biotechnology and Bio-resource Utilization, College of Oceanography, Hohai University, Nanjing, 201198, People's Republic of China.
| |
Collapse
|
5
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
6
|
Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR, Madamwar D, Pansare A, Shouche Y. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 2021; 203:3591-3604. [PMID: 33966089 DOI: 10.1007/s00203-021-02349-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
A novel bacterial strain designated as ADMK78T was isolated from the saline desert soil. The cells were rod-shaped, Gram-stain-negative, and non-motile. The strain ADMK78T grows best at 28 °C. Phylogeny of 16S rRNA gene placed the strain ADMK78T with the members of genera Ciceribacter and Rhizobium, while the highest sequence similarity was with Rhizobium wuzhouense W44T (98.7%) and Rhizobium ipomoeae shin9-1 T (97.9%). Phylogenetic analysis based on 92 core-genes extracted from the genome sequences and average amino acid identity (AAI) revealed that the strain ADMK78T forms a distinct cluster including five species of Rhizobium, which is separate from the cluster of the genera Rhizobium and Ciceribacter. We propose re-classification of Rhizobium ipomoeae, R. wuzhouense, R. rosettiformans and R. rhizophilum into the novel genus Peteryoungia. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of ADMK78T were less than 82 and 81%, respectively, among all type strains included in the genus Peteryoungia. The strain ADMK78T showed differences in physiological, phenotypic, and protein profiles estimated by MALDI-TOF MS to its closest relatives. Based on the phenotypic, chemotaxonomic properties, and phylogenetic analyses, the strain ADMK78T represents a novel species, Peteryoungia desertarenae sp. nov. The type strain is ADMK78T (= MCC 3400T; KACC 21383T; JCM 33657T). We also proposed the reclassification of Rhizobium daejeonense, R. naphthalenivorans and R. selenitireducens, into the genus Ciceribacter, based on core gene phylogeny and AAI values.
Collapse
Affiliation(s)
- Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| | - Mitesh Khairnar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Ashwini Hagir
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Avinash Narayan
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Kunal R Jain
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Aabeejjeet Pansare
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India
| |
Collapse
|
7
|
Genome Analysis of Endobacterium cerealis, a Novel Genus and Species Isolated from Zea mays Roots in North Spain. Microorganisms 2020; 8:microorganisms8060939. [PMID: 32580505 PMCID: PMC7356062 DOI: 10.3390/microorganisms8060939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022] Open
Abstract
In the present work, we analyse the genomic and phenotypic characteristics of a strain named RZME27T isolated from roots of a Zea mays plant grown in Spain. The phylogenetic analyses of 16S rRNA gene and whole genome sequences showed that the strain RZME27T clustered with the type strains of Neorhizobium galegae and Pseudorhizobium pelagicum from the family Rhizobiaceae. This family encompasses several genera establishing symbiosis with legumes, but the genes involved in nodulation and nitrogen fixation are absent in its genome. Nevertheless, genes related to plant colonization, such as those involved in motility, chemotaxis, quorum sensing, exopolysaccharide biosynthesis and hydrolytic enzymes production were found. The comparative pangenomic analyses showed that 78 protein clusters present in the strain RZME27T were not found in the type strains of its closest relatives N. galegae and P. pelagicum. The calculated average nucleotide identity (ANI) values between the strain RZME27T and the type strains of N. galegae and P. pelagicum were 75.61% and 75.1%, respectively, similar or lower than those found for other genera from family Rhizobiaceae. Several phenotypic differences were also found, highlighting the absence of the fatty acid C19:0 cyclo ω8c and propionate assimilation. These results support the definition of a novel genus and species named Endobacterium cerealis gen. nov. sp. nov. whose type strain is RZME27T.
Collapse
|
8
|
Deng T, Qian Y, Chen X, Yang X, Guo J, Sun G, Xu M. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(II)-oxidizing bacterium isolated from ferrous ion-rich sediment. J Microbiol 2020; 58:350-356. [PMID: 32342339 DOI: 10.1007/s12275-020-9471-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
Abstract
A nitrate-reducing Fe(II)-oxidizing bacterial strain, F8825T, was isolated from the Fe(II)-rich sediment of an urban creek in Pearl River Delta, China. The strain was Gram-negative, facultative chemolithotrophic, facultative anaerobic, non-spore-forming, and rod-shaped with a single flagellum. Phy-logenetic analysis based on 16S rRNA gene sequencing indicated that it belongs to the genus Ciceribacter and is most closely related to C. lividus MSSRFBL1T (99.4%), followed by C. thiooxidans F43bT (98.8%) and C. azotifigens A.slu09T (98.0%). Fatty acid, polar lipid, respiratory quinone, and DNA G + C content analyses supported its classification in the genus Ciceribacter. Multilocus sequence analysis of concatenated 16S rRNA, atpD, glnII, gyrB, recA, and thrC suggested that the isolate was a novel species. DNA-DNA hybridization and genome sequence comparisons (90.88 and 89.86%, for values of ANIm and ANIb between strains F8825T with MSSRFBL1T, respectively) confirmed that strain F8825T was a novel species, different from C. lividus MSSRFBL1T, C. thiooxidans F43bT, and C. azotifigens A.slu09T. The physiological and biochemical properties of the strain, such as carbon source utilization, nitrate reduction, and ferrous ion oxidation, further supported that this is a novel species. Based on the polyphasic taxonomic results, strain F8825T was identified as a novel species in the genus Ciceribacter, for which the name Ciceribacter ferrooxidans sp. nov. is proposed. The type strain is F8825T (= CCTCC AB 2018196T = KCTC 62948T).
Collapse
Affiliation(s)
- Tongchu Deng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Youfen Qian
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
| | - Jun Guo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, P. R. China.
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, P. R. China.
| |
Collapse
|
9
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
10
|
Ruan ZP, Cao WM, Zhang X, Liu JTY, Zhu JC, Hu B, Jiang JD. Rhizobium terrae sp. nov., Isolated from an Oil-Contaminated Soil in China. Curr Microbiol 2020; 77:1117-1124. [PMID: 31982965 DOI: 10.1007/s00284-020-01889-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
A Gram-stain-negative, facultative aerobic, non-spore-forming, non-motile, non-flagellated, rod-shaped bacterium, designated strain NAU-18T was isolated from an oil-contaminated soil in China. Strain NAU-18T could grow at 10-42 °C (optimum, 30 °C), at pH 5.0-8.0 (optimum, 7.0) and in the presence of 0-2.0% (w/v) NaCl (optimum, 0.5% NaCl in R2A). The predominant fatty acids were C18:1ω7c (71.2%) and Summed feature 2 (5.1%), representing 76.3% of the total fatty acids. The major respiratory quinones were Q9 and Q10. The DNA G + C content of strain NAU-18T was 61.4 mol% based on its draft genome sequence. Genome annotation of strain NAU-18T predicted the presence of 6668 genes, of which 6588 are coding proteins and 80 are RNA genes. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NAU-18T was a member of the genus Rhizobium and showed 96.93% (with 93.2% coverage) and 96.81% (with 100% coverage) identities with those of Neorhizobium alkalisoli CCBAU 01393T and Rhizobium oryzicola ZYY136T, respectively. In the phylogenetic analysis, strain NAU-18T and R. oryzicola ZYY136T are consistently placed in the same branch. Strain NAU-18T represents a novel species within the genus Rhizobium, for which the name Rhizobium terrae sp. nov. is proposed, with the type strain NAU-18T (=KCTC 62418T = CCTCC AB 2018075T).
Collapse
Affiliation(s)
- Zhe-Pu Ruan
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei-Miao Cao
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Tian-Yi Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Chun Zhu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Experimental Biology Education Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Hu
- Experimental Biology Education Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Cao J, Wei Y, Lai Q, Wu Y, Deng J, Li J, Liu R, Wang L, Fang J. Georhizobium profundi gen. nov., sp. nov., a piezotolerant bacterium isolated from a deep-sea sediment sample of the New Britain Trench. Int J Syst Evol Microbiol 2020; 70:373-379. [PMID: 31613738 DOI: 10.1099/ijsem.0.003766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
A novel alphaproteobacterium, strain WS11T, was isolated from a deep-sea sediment sample collected from the New Britain Trench. The full-length 16S rRNA gene of strain WS11T had the highest sequence similarity of 97.6 % to Rhizobium subbaraonis JC85T, followed by Mycoplana ramosa DSM 7292T (96.9 %) and Rhizobium azooxidifex Po 20/26T (96.8 %). Phylogenetic analysis of concatenated 16S rRNA, atpD and recA gene sequences showed that strain WS11T was deeply separated from the species within the family Rhizobiaceae. Phylogenomic analysis based on the whole-genome protein sequences showed that strain WS11T formed an independent monophyletic branch in the family Rhizobiaceae, paralleled with the species in the families Brucellaceae and Phyllobacteriaceae within the order Rhizobiales. Cells were Gram-stain-negative, oxidase- and catalase-positive, and aerobic short rods (1.5-2.4×0.9-1.0 µm). Growth was observed at salinities ranging from 0 to 5% (optimum, 1 %), from pH 6.5 to 9 (optimum, pH 7) and at temperatures between 20 and 30 °C (optimum, 28 °C). Strain WS11T was piezotolerant, growing optimally at 0.1 MPa (range 0.1-70 MPa). The main fatty acid was summed feature 8 (C18 : 1 ω7c/C18 : 1 ω 6c). The sole respiratory quinone was ubiquinone-10 (Q-10). The predominant polar lipids were phosphatidylcholine, two unidentified aminophospholipids and an unidentified phospholipid. The genome size was about 4.36 Mbp and the G+C content was 62.3 mol%. The combined genotypic and phenotypic data show that strain WS11T represents a novel species of a novel genus in the family Rhizobiaceae, for which the name Georhizobium profundi gen. nov., sp. nov. is proposed (type strain WS11T=MCCC 1K03498T=KCTC 62439T).
Collapse
Affiliation(s)
- Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Yunjie Wu
- Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China
| | - Junhao Deng
- Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China
| | - Jianyang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
13
|
Siddiqi MZ, Choi GM, Im WT. Ciceribacter azotifigens sp. nov., a nitrogen-fixing bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:482-486. [DOI: 10.1099/ijsem.0.002438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
| | - Gyu-Min Choi
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
- AceEMzyme Co., Ltd., Academic Industry Cooperation, 327 Chungang-no Anseong-si, Kyonggi-do 17579, Republic of Korea
| |
Collapse
|
14
|
Mesorhizobium zhangyense sp. nov., isolated from wild Thermopsis lanceolate in northwestern China. Arch Microbiol 2017; 200:603-610. [PMID: 29279965 DOI: 10.1007/s00203-017-1464-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
A Gram-stain-negative strain, 23-3-2T, was isolated from a nodule of Thermopsis lanceolate grown in Northwest China. Phylogenetic analysis of 16S rRNA gene sequence showed that the strain was closely related to Mesorhizobium camelthorni CCNWXJ 40-4T and M. alhagi CCNWXJ 12-2T having 98.0 and 97.9% similarities, respectively. Phylogenetic analysis based on the protein-coding genes atpD and glnA showed lower similarity with the same closely related species (94.5 and 89.9%, respectively), which suggest that 23-3-2T strain represents a distinctly delineated genospecies of the genus Mesorhizobium. The 23-3-2T strain grew at 20-37 °C temperature (optimum 28 °C) and 5.0-9.0 pH range (optimum pH 7.0). The cells contained Q-10 as the sole respiratory quinone and 18:1ω7c (24.56%) as the major cellular fatty acid. The DNA relatedness between the strain 23-3-2T and the two reference strains was 39-44%. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strain 23-3-2T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium zhangyense sp. nov. is proposed. The type strain is 23-3-2T (= CGMCC 1.15528T = NBRC 112337T). The respective DPD Taxon Number is TA00147.
Collapse
|
15
|
Deng T, Chen X, Zhang Q, Zhong Y, Guo J, Sun G, Xu M. Ciceribacter thiooxidans sp. nov., a novel nitrate-reducing thiosulfate-oxidizing bacterium isolated from sulfide-rich anoxic sediment. Int J Syst Evol Microbiol 2017; 67:4710-4715. [DOI: 10.1099/ijsem.0.002367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tongchu Deng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
| | - Qin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
| | - Yuming Zhong
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China
| |
Collapse
|
16
|
Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T, Schumann P. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017; 67:4565-4571. [DOI: 10.1099/ijsem.0.002332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Erika Tóth
- Department of Microbiology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Sára Szuróczki
- Department of Microbiology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Zsuzsa Kéki
- Department of Microbiology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Károly Bóka
- Department of Plant Anatomy, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Szili-Kovács
- Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Herman O. Str. 15, Hungary
| | - Peter Schumann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
17
|
Oves M, Khan MS, Qari HA. Ensifer adhaerens for heavy metal bioaccumulation, biosorption, and phosphate solubilization under metal stress condition. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Analysis of rhizobial endosymbionts of Vicia, Lathyrus and Trifolium species used to maintain mountain firewalls in Sierra Nevada National Park (South Spain). Syst Appl Microbiol 2017; 40:92-101. [DOI: 10.1016/j.syapm.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
19
|
de Lajudie P, Martinez-Romero E. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67:516-520. [DOI: 10.1099/ijsem.0.001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, LSTM, Campus International de Baillarguet TA A-82/J, 34398 Montpellier Cédex 5, France
| | | |
Collapse
|
20
|
Shcherbakova EN, Shcherbakov AV, Andronov EE, Gonchar LN, Kalenskaya SM, Chebotar VK. Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 2017. [DOI: 10.1007/s13199-016-0472-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Raju K, Sekar J, Vaiyapuri Ramalingam P. Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 2016; 66:1074-1079. [DOI: 10.1099/ijsem.0.000837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kathiravan Raju
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Jegan Sekar
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Department, M.S. Swaminathan Research Foundation, 3rd Cross Street, Taramani Institutional Area, Chennai 600113, India
| |
Collapse
|
22
|
Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 2015; 38:293-9. [DOI: 10.1016/j.syapm.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|