1
|
Chen Y, Liu T, Lai Q, Dong C, Shao Z. Zunongwangia pacifica sp. nov., isolated from surface seawater of the Western Pacific Ocean. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748469 DOI: 10.1099/ijsem.0.005606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Zunongwangia is a group of marine bacteria with important industrial application potential and ecological functions. In this study, a Gram-stain-negative, rod-shaped, non-motile, strictly aerobic and bright yellow pigmented bacterial strain within this genus, designated C2-37M9T, was isolated from a surface seawater sample from the Philippine Basin in the Western Pacific Ocean. Strain C2-37M9T grew at 10-44 °C (optimum, 28-30 °C), pH 6-9 (pH 7) and in the presence of 0-12 % NaCl (w/v; 2-3 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus Zunongwangia and had 95.7-98.7 % sequence similarity to all type strains of this genus, with the highest value corresponding to Zunongwangia profunda (98.7 %). Digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values between strain C2-37M9T and all valid type strains were 27.5-32.3, 83.8-86.7 and 86.9-89.0 %, respectively. The principal fatty acids (>5 %) were iso-C15 : 0, iso-C17 : 0 3-OH, anteiso-C15 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1 ω9c), iso-C15 : 1 G and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant respiratory quinone was MK-6. The polar lipids were one phosphatidylethanolamine, two unknown glycolipids, three unidentified aminolipids and six unidentified lipids. The genomic DNA G+C content of strain C2-37M9T was 36.7 mol%. Based on phylogenetic results and genomic-based relatedness indices, as well as phenotypic and genotypic characteristics, strain C2-37M9T represents a novel species within the genus Zunongwangia, for which the name Zunongwangia pacifica sp. nov. is proposed. The type strain is C2-37M9T (=MCCC M21534T=KCTC 82852T).
Collapse
Affiliation(s)
- Yongqing Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Tianqi Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
2
|
Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with Pichavaram mangrove rhizospheres as revealed by culture-dependent and culture-independent analyses. Arch Microbiol 2022; 204:109. [PMID: 34978623 DOI: 10.1007/s00203-021-02661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/02/2022]
Abstract
Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.
Collapse
|
3
|
Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India, Kerala. Microbiol Res 2020; 240:126533. [DOI: 10.1016/j.micres.2020.126533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/06/2020] [Indexed: 01/26/2023]
|
4
|
Wang L, Lai Q, Liu X, Shao Z. Paramesonia marina gen. nov., sp. nov., isolated from deep-sea water of the Indian Ocean. Int J Syst Evol Microbiol 2020; 70:2325-2333. [PMID: 32065576 DOI: 10.1099/ijsem.0.004041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out of strain K7T, which was isolated from deep-sea water collected from the Indian Ocean. The bacterium was Gram-stain-negative, aerobic, oxidase-negative, catalase-positive, rod-shaped and non-motile. Growth was observed at salinities of 0.5-10 % (optimum, 3 %), at a pH range of pH 6.0-10.0 (optimum, pH 7.0) and at temperatures of 10-40 °C (optimum, 28 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K7T belonged to the family Flavobacteriaceae, with the high sequence similarities to the genera Mesonia (92.2 %-94.4 %), Salinimicrobium (91.9 %-93.2 %), Salegentibacter (92.1 %-92.6 %), Leeuwenhoekiella (92.1 %-92.3 %), Gramella (91.9 %-92.1 %) and Zunongwangia (91.8 %-92.1 %). The principal fatty acids were iso-C15 : 0 (28.4 %), iso-C15 : 1G (14.2 %), summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl; 11.6 %), iso-C17 : 0 3-OH (10.0 %) and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 9.6 %). The G+C content of the chromosomal DNA was 35.8 mol%. The respiratory quinone was determined to be MK-6 (100 %). Phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipid and four unidentified lipids were detected. The combined genotypic and phenotypic data show that strain K7T represents a novel species of a novel genus, for which the name Paramesonia marina gen. nov., sp. nov. is proposed, with the type strain K7T (=MCCC 1A01093T=KCTC 52325T).
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Xiupian Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
5
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
6
|
Guo Y, Marletta MA. Structural Insight into H‐NOX Gas Sensing and Cognate Signaling Protein Regulation. Chembiochem 2018; 20:7-19. [DOI: 10.1002/cbic.201800478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
| | - Michael A. Marletta
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of Molecular and Cell BiologyUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of ChemistryUniversity of California, Berkeley Berkeley, CA 94720 USA
| |
Collapse
|
7
|
Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea. J Microbiol 2018; 56:868-873. [PMID: 30361977 DOI: 10.1007/s12275-018-8231-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20‒37°C (optimum, 25‒30°C), at pH 6.0‒10.0 (optimum, 7.0‒8.0), and with 0.5‒15.0% (w/v) NaCl (optimum, 2.0‒5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).
Collapse
|
8
|
Isolation and characterization of a novel 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing plant growth promoting marine Gammaproteobacteria from crops grown in brackish environments. Proposal for Pokkaliibacter plantistimulans gen. nov., sp. nov., Balneatrichaceae fam. nov. in the order Oceanospirillales and an emended description of the genus Balneatrix. Syst Appl Microbiol 2018; 41:570-580. [PMID: 30139512 DOI: 10.1016/j.syapm.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 11/22/2022]
Abstract
Three novel strains namely, L1E11T, L1E4 and 228 were isolated as part of an ongoing study on 1-aminocyclopropane-1-carboxylate (ACC) deaminase expressing rhizobacteria from crops cultivated in saline affected coastal agro-ecosystems of Kerala, India. The novel strains were positive for many properties that are beneficial to plant growth including ACC deaminase (ACCd) activity that ranged from 1.87±0.27 to 2.88±0.71μmol of α-ketobutyrate/hr/mg of total protein. Presence of other traits such as biofilm formation, siderophore production, phosphate solubilisation, utilisation of root derived compounds and ability to colonise host roots indicates its plant-associated life style. In complement, the genomic data reveals gene features for higher adaptation to plant-associated environments. In-planta assays showed that L1E11T can promote and protect pokkali rice plants from 200mM NaCl stress. Phylogenetic, chemotaxonomic, phenotypic and genomic characterisation indicates that the novel strains belong to a novel genus and species of the order Oceanospirillales for which the names Pokkaliibacter gen. nov., and Pokkaliibacter plantistimulans sp. nov., are proposed with L1E11T (=DSM 28732T=MCC 2992T) as the type strain. Further, on the basis of low 16S rRNA sequence similarity, phylogenetic divergence, source of isolation and few differences in the phenotypic properties against its nearest taxon, a new family Balneatrichaceae fam. nov., is proposed to accommodate the two genera Balneatrix and Pokkaliibacter gen.nov. with Balneatrix as the type genus. An emended description of the genus Balneatrix is also presented.
Collapse
|
9
|
Fidalgo C, Martins R, Proença DN, Morais PV, Alves A, Henriques I. Zunongwangia endophytica sp. nov., an endophyte isolated from the salt marsh plant, Halimione portulacoides, and emended description of the genus Zunongwangia. Int J Syst Evol Microbiol 2017; 67:3004-3009. [PMID: 28853694 DOI: 10.1099/ijsem.0.002069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cátia Fidalgo
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Ricardo Martins
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | - Paula V. Morais
- Department of Life Sciences, FCTUC, University of Coimbra, 3000-456 Coimbra, Portugal
- CEMUC, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Fidalgo C, Henriques I, Rocha J, Tacão M, Alves A. Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal(loid) contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10200-14. [PMID: 26875822 DOI: 10.1007/s11356-016-6208-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/29/2016] [Indexed: 05/27/2023]
Abstract
Halimione portulacoides is abundant in salt marshes, accumulates mercury (Hg), and was proposed as useful for phytoremediation and pollution biomonitoring. Endophytic bacteria promote plant growth and provide compounds with industrial applications. Nevertheless, information about endophytic bacteria from H. portulacoides is scarce. Endophytic isolates (n = 665) were obtained from aboveground and belowground plant tissues, from two Hg-contaminated sites (sites E and B) and a noncontaminated site (site C), in the estuary Ria de Aveiro. Representative isolates (n = 467) were identified by 16S rRNA gene sequencing and subjected to functional assays. Isolates affiliated with Proteobacteria (64 %), Actinobacteria (23 %), Firmicutes (10 %), and Bacteroidetes (3 %). Altererythrobacter (7.4 %), Marinilactibacillus (6.4 %), Microbacterium (10.2 %), Salinicola (8.8 %), and Vibrio (7.8 %) were the most abundant genera. Notably, Salinicola (n = 58) were only isolated from site C; Hoeflea (17), Labrenzia (22), and Microbacterium (67) only from belowground tissues. This is the first report of Marinilactibacillus in the endosphere. Principal coordinate analysis showed that community composition changes with the contamination gradient and tissue. Our results suggest that the endosphere of H. portulacoides represents a diverse bacterial hotspot including putative novel species. Many isolates, particularly those affiliated to Altererythrobacter, Marinilactibacillus, Microbacterium, and Vibrio, tested positive for enzymatic activities and plant growth promoters, exposing H. portulacoides as a source of bacteria and compounds with biotechnological applications.
Collapse
Affiliation(s)
- Cátia Fidalgo
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
- iBiMED and CESAM, Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- iBiMED and CESAM, Departamento de Biologia, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Jaqueline Rocha
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Marta Tacão
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Artur Alves
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Krishnan R, Menon RR, Tanaka N, Busse HJ, Krishnamurthi S, Rameshkumar N. Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS One 2016; 11:e0150322. [PMID: 26963092 PMCID: PMC4786123 DOI: 10.1371/journal.pone.0150322] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abilities to promote plant growth under saline conditions. The novel strain P3B162T possesses plant growth beneficial traits such as positive growth on 1-aminocyclopropane-1-carboxylic acid (ACC), production of indole acetic acid (IAA) and siderophore. In addition, it also showed important phenotypic characters such as ability to form biofilm and utilization of various components of plant root exudates (sugars, amino acids and organic acids), clearly indicating its lifestyle as a plant rhizosphere associated bacterium. Taxonomically, the novel strain P3B162T was affiliated to the genus Arthrobacter based on the collective results of phenotypic, genotypic and chemotaxonomic analyses. Moreover, molecular analysis using 16S rRNA gene showed Arthrobacter globiformis NBRC 12137T, Arthrobacter pascens DSM 20545T and Arthrobacter liuii DSXY973T as the closely related phylogenetic neighbours, showing more than 98% 16S rRNA similarity values, whereas the recA gene analysis displayed Arthrobacter liuii JCM 19864T as the nearest neighbour with 94.7% sequence similarity and only 91.7% to Arthrobacter globiformis LMG 3813T and 88.7% to Arthrobacter pascens LMG 16255T. However, the DNA-DNA hybridization values between strain P3B162T, Arthrobacter globiformis LMG 3813T, Arthrobacter pascens LMG 16255T and Arthrobacter liuii JCM 19864T was below 50%. In addition, the novel strain P3B162T can be distinguished from its closely related type strains by several phenotypic characters such as colony pigment, tolerance to NaCl, motility, reduction of nitrate, hydrolysis of DNA, acid from sucrose, cell wall sugars and cell wall peptidoglycan structure. In conclusion, the combined results of this study support the classification of strain P3B162T as a novel Arthrobacter species and we propose Arthrobacter pokkalii sp.nov.as its name. The type strain is P3B162T (= KCTC 29498T = MTCC 12358T).
Collapse
Affiliation(s)
- Ramya Krishnan
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| | - Rahul Ravikumar Menon
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan
| | - Hans-Jürgen Busse
- Institute of Microbiology, Veterinary University Vienna, A-1210, Vienna, Austria
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, 160036, India
| | - Natarajan Rameshkumar
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| |
Collapse
|
12
|
Rameshkumar N, Lang E, Tanaka N. Description of Vogesella oryzae sp. nov., isolated from the rhizosphere of saline tolerant pokkali rice. Syst Appl Microbiol 2015; 39:20-4. [PMID: 26597454 DOI: 10.1016/j.syapm.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/29/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
Three strains, namely L3B39(T), L3D16, and L1E9, were obtained while studying the cultivable rhizosphere bacteria of saline tolerant pokkali rice, at Kerala, India. The novel strains were negative for many plant growth promoting plate assays such as phytohormone and siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and growth in nitrogen free agar medium but found to utilize malic acid, citrate, D-glucose, L-arabinose, and D-maltose, important components of the plant root exudates, indicating that they are normal plant rhizosphere residents without yet known benefits to the plant. The 16S rRNA gene analysis placed these strains in the genus Vogesella, forming a separate branch independent of the previously described type strains of this genus in all tree making algorithms applied. Vogesella perlucida DS-28(T) was the type strain with highest 16S rRNA sequence similarity (97.59%). DNA-DNA hybridization values among these novel strains were above 85% andthat with Vogesella perlucida LMG 24214(T) was below 50%. Phenotypically, the novel strains can be differentiated from Vogesella perlucida LMG 24214(T) by many characters such as NaCl tolerance, growth temperature, and utilization of L-arabinose, D-maltose, and citrate. These novel strains contain C16:1ω6c/C16:1ω7c and C16:0 as major fatty acids, ubiquinone Q-8 as the major respiratory quinone, and phosphatidylethanolamine and phosphatidylglycerol as major polar lipids. Based on the results obtained from the polyphasic taxonomic approach we conclude that the strains belong to a novel Vogesella species for which the name Vogesella oryzae sp.nov. is proposed. The type strain is L3B39(T) (= LMG 28272(T)=DSM 28780(T)).
Collapse
Affiliation(s)
- N Rameshkumar
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, Kerala 695 019, India.
| | - Elke Lang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7b, Braunschweig 30124, Germany
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, 10 Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|