1
|
Roman I, Fedorenko V, Gromyko O. Phylogenomic analyses of the genus Actinoplanes: description of four novel genera. Int J Syst Evol Microbiol 2024; 74. [PMID: 39046446 DOI: 10.1099/ijsem.0.006464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The genus Actinoplanes comprises 57 species (in February 2024) that are important components of ecosystems and are widely used in biotechnology, especially pharmaceuticals. Phylogenetic analysis of the family Micromonosporaceae (based on the 16S rRNA gene sequence) allowed us to group members of different genera into separate clades; however, the genus Actinoplanes was divided into three separate clades. Such phylogenetic heterogeneity could be due to the limitations of 16S rRNA gene analysis. In response to this heterogeneity, genomic phylogeny was performed. Phylogenomic reconstruction based on 324 single-copy orthologous genes allowed us to divide the genus Actinoplanes first into four clades and then, based on average nucleotide identity analysis, into five clades. Finally, chemotaxonomic analysis of each clade confirmed each clade's distinctiveness and the necessity to reclassify the genus Actinoplanes. The obtained data allowed us to divide the genus Actinoplanes into five genera: Actinoplanes, Paractinoplanes, Winogradskya, Symbioplanes and Amorphoplanes.
Collapse
Affiliation(s)
- Ivan Roman
- Department of Genetics and Biotechnology, Faculty of Biology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Faculty of Biology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Oleksandr Gromyko
- Department of Genetics and Biotechnology, Faculty of Biology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
- Microbial Culture Collection of Antibiotic Producers, Faculty of Biology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| |
Collapse
|
2
|
Yushchuk O, Binda E, Rückert-Reed C, Berini F, Fedorenko V, Kalinowski J, Marinelli F. Actinoplanes oblitus sp. nov., producing the glycopeptide antibiotic A477. Int J Syst Evol Microbiol 2024; 74. [PMID: 38190227 DOI: 10.1099/ijsem.0.006225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
In 1973, Eli Lilly and Company described the filamentous actinomycete producing the glycopeptide antibiotic A477 as an Actinoplanes species on the basis of its morphological and physiological features and deposited it as NRRL 3884T. In this paper, we report that the phylogenetic analysis based on the 16S rRNA gene sequence and the whole genome phylogenomic study indicate that NRRL 3884T forms a distinct monophyletic line within the genus Actinoplanes, being most closely related to Actinoplanes octamycinicus NBRC 14524T [99.6 % 16S rRNA gene similarity, 89.4 % average nucleotide identity (ANI), 46.0 % digital DNA-DNA hybridization (dDDH)] and Actinoplanes ianthinogenes NBRC 13996T (98.8 % 16S rRNA gene similarity, 89.0 % ANI, 47.0 % dDDH). NRRL 3884T forms an extensively branched, non-fragmented vegetative mycelium; either sterile aerial hyphae or regular subglobose sporangia are formed depending on cultivation conditions. The cell wall contains meso-2,6-diaminopimelic acid and 2,6-diamino-3-hydroxypimelic acid and the diagnostic sugars are glucose, mannose and ribose with a minor amount of rhamnose. The predominant menaquinone (MK) is MK-9(H4), with minor amounts of MK-9(H2), MK-9(H6) and MK-9(H8). Mycolic acids are absent. The diagnostic phospholipids are diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids are anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0, with moderate amounts of anteiso-C15 : 0 and iso-C17 : 0. The genomic G+C content is 71.5 mol%. Significant differences in the genomic, morphological, chemotaxonomic and biochemical data between NRRL 3884T and the two most closely related Actinoplanes type strains clearly demonstrate that NRRL 3884T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes oblitus sp. nov. is proposed. The type strain is NRRL 3884T (=DSM 116196T).
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
- Ivan Franko National University of Lviv, Department of Genetics and Biotechnology, 79005 Lviv, Ukraine
| | - Elisa Binda
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| | | | - Francesca Berini
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| | - Victor Fedorenko
- Ivan Franko National University of Lviv, Department of Genetics and Biotechnology, 79005 Lviv, Ukraine
| | - Jörn Kalinowski
- Bielefeld University, Technology Platform Genomics, CeBiTec, 33615 Bielefeld, Germany
| | - Flavia Marinelli
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| |
Collapse
|
3
|
Wang Z, Xu Y, Zhou C, Sun X, Huang Z, He C, Yao S, Zhao J, Wang X, Song J, Xiang W. Actinoplanes sandaracinus sp. nov. , a novel ligninase- producing and cellulose-degrading actinobacterium isolated from soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180325 DOI: 10.1099/ijsem.0.006216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A novel ligninase-producing and cellulose-degrading actinobacterium, designated strain NEAU-A12T, was isolated from a soil sample collected from Aohan banner, Chifeng City, Inner Mongolia Autonomous Region, PR China. A polyphasic taxonomic study was used to establish the status of strain NEAU-A12T. 16S rRNA gene sequence analysis revealed that strain NEAU-A12T belonged to the genus Actinoplanes and showed the highest similarity (98.3 %) to Actinoplanes palleronii DSM 43940T, while showing less than 98.3 % similarity to other members of the genus Actinoplanes. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and glycosylphosphatidylinositol. The diagnostic sugars in cell hydrolysates were determined to be arabinose, glucose and xylose. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The major fatty acids were C15 : 0, C16 : 0, C16 : 1 ω7c and C17 : 0. Meanwhile, genomic analysis revealed a genome size of 10 192 524 bp and a DNA G+C content of 70.6 mol%, and indicated that strain NEAU-A12T had the potential to degrade lignin and cellulose, as well as produce bioactive compounds. In addition, the average nucleotide identity values between strain NEAU-A12T and its reference strains A. palleronii DSM 43940T, Actinoplanes regularis DSM 43151T, Actinoplanes philippinensis DSM 43019T, Actinoplanes xinjiangensis DSM 45184T and Actinoplanes italicus DSM 43146T were 80.3, 80.3, 84.1, 84.3 and 84.0 %, respectively. The levels of digital DNA-DNA hybridization between them were found to be 23.6 % (21.3-26.1 %), 23.8 % (21.5-26.3 %), 28.3 % (25.9-30.8 %), 28.6 % (26.0-30.9 %) and 28.4 % (26.2-31.1 %), respectively. Based on phenotypic, chemotaxonomic and genotypic data, strain NEAU-A12T is considered to represent a novel species of the genus Actinoplanes, for which the name Actinoplanes sandaracinus sp. nov. is proposed, with NEAU-A12T (=CCTCC AA 2020039T=DSM 112043T) as the type strain.
Collapse
Affiliation(s)
- Zishan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhenzhen Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Chuan He
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Siqi Yao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
4
|
Song J, Sun X, Luo X, He C, Huang Z, Zhao J, He B, Du X, Wang X, Xiang W. Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil. Antonie van Leeuwenhoek 2021; 114:1517-1527. [PMID: 34324105 DOI: 10.1007/s10482-021-01617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
A novel protease-producing actinobacterium, designated strain NEAU-A11T, was isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China, and characterised using a polyphasic approach. The hydrolytic enzymes, such as proteases, played critical roles in destruction of fungi by degrading the protein linkages to disrupt integrity in the cell wall. This suggested that the isolate could be a good biocontrol candidate against pathogens to control fungal diseases. On the basis of 16S rRNA gene sequence analysis, strain NEAU-A11T was indicated to belong to the genus Actinoplanes and was most closely related to Actinoplanes rectilineatus JCM 3194 T (98.9%). Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were arabinose, xylose and glucose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were C18:0, C16:0, C18:1 ω9c, C17:0 and C15:0. Genome sequencing revealed a genome size of 10,742,096 bp, a G + C content of 70.5% and 9,514 protein-coding genes (CDS), including 102 genes coding for protease. Moreover, Genome analysis showed that strain NEAU-A11T contained 255 glycoside hydrolases (GHs), 152 glycosyl transferases (GTs), 40 carbohydrate esterases (CEs), 26 polysaccharide lyases (PLs), and 12 auxiliary activities (AAs) genes. Genome mining analysis using antiSMASH 5.0 led to the identification of 20 putative gene clusters responsible for the production of diverse secondary metabolites. Phylogenetic analysis using the 16S rRNA gene sequences showed that the strain formed a stable clade with A. rectilineatus JCM 3194 T in the genus Actinoplanes. Whole-genome phylogeny showed strain NEAU-A11T formed a stable phyletic line with Actinoplanes lutulentus DSM 45883 T (97.6%). However, whole-genome average nucleotide identity value between strain NEAU-A11T and its reference strains A. rectilineatus JCM 3194 T and A. lutulentus DSM 45883 T were found to be 81.1% and 81.6%, respectively. The levels of digital DNA-DNA hybridization between them were 24.6% (22.2-27.0%) and 24.8% (22.5-27.3%), respectively. The values were well below the criteria for species delineation of 70% for dDDH and 95-96% for ANI, suggesting that the isolate differed genetically from its closely related type strain. The content of G + C in genomic DNA was 70.5%, within the range of 67-76%. In addition, evidences from phenotypic, chemotaxonomic and genotypic studies indicated that strain NEAU-A11T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes aureus sp. nov. is proposed, with NEAU-A11T (= CCTCC AA 2019063 T = JCM 33971 T) as the type strain.
Collapse
Affiliation(s)
- Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xianxian Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chuan He
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Zhenzhen Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Beiru He
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiaowen Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
He H, Xing J, Liu C, Li C, Ma Z, Li J, Xiang W, Wang X. Actinoplanes rhizophilus sp. nov., an actinomycete isolated from the rhizosphere of Sansevieria trifasciata Prain. Int J Syst Evol Microbiol 2015; 65:4763-4768. [DOI: 10.1099/ijsem.0.000646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain NEAU-A-2T, was isolated from the rhizosphere soil of Sansevieria trifasciata Prain collected from Heilongjiang province, north-east China. The taxonomic status of this organism was established using a polyphasic approach. The isolate formed irregular sporangia containing motile spores on the substrate mycelium. The whole-cell sugars were xylose and galactose. The predominant menaquinones were MK-9(H10), MK-9(H2), MK-10(H2) and MK-10(H4). The major fatty acids were iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, three unidentified phospholipids and an unidentified glycolipid. 16S rRNA gene sequence similarity studies showed that strain NEAU-A-2T belongs to the genus Actinoplanes with the highest sequence similarities to Actinoplanes globisporus NBRC 13912T (97.7 % 16S rRNA gene sequence similarity), Actinoplanes ferrugineus IMSNU 22125T (97.5 %), Actinoplanes toevensis MN07-A0368T (97.2 %) and Actinoplanes rishiriensis NBRC 108556T (97.2 %); similarities to type strains of other species of this genus were < 97 %. Two tree-making algorithms showed that strain NEAU-A-2T formed a distinct clade with A. globisporus NBRC 13912T and A. rishiriensis NBRC 108556T. However, low DNA–DNA relatedness values allowed the isolate to be differentiated from the above-mentioned two species of the genus Actinoplanes. Moreover, strain NEAU-A-2T could also be distinguished from the most closely related species by morphological and physiological characteristics. Therefore, in conclusion, isolate NEAU-A-2T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes rhizophilus sp. nov. is proposed. The type strain is NEAU-A-2T ( = CGMCC 4.7133T = DSM 46672T).
Collapse
Affiliation(s)
- Hairong He
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jia Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chuang Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zhaoxu Ma
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jiansong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|