1
|
Sizov LR, Lysak LV, Gmoshinskii VI. Taxonomic Diversity of the Bacterial Community Associated with the Fruiting Bodies of the Myxomycete Lycogala epidendrum (L.) Fr. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Muszynski S, Maurer F, Henjes S, Horn MA, Noll M. Fungal and Bacterial Diversity Patterns of Two Diversity Levels Retrieved From a Late Decaying Fagus sylvatica Under Two Temperature Regimes. Front Microbiol 2021; 11:548793. [PMID: 33584553 PMCID: PMC7874115 DOI: 10.3389/fmicb.2020.548793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Environmental fluctuations are a common occurrence in an ecosystem, which have an impact on organismic diversity and associated ecosystem services. The aim of this study was to investigate how a natural and a species richness-reduced wood decaying community diversity were capable of decomposing Fagus sylvatica dead wood under a constant and a fluctuating temperature regime. Therefore, microcosms with both diversity levels (natural and species richness-reduced) were prepared and incubated for 8 weeks under both temperature regimes. Relative wood mass loss, wood pH, carbon dioxide, and methane emissions, as well as fungal and bacterial community compositions in terms of Simpson‘s diversity, richness and evenness were investigated. Community interaction patterns and co-occurrence networks were calculated. Community composition was affected by temperature regime and natural diversity caused significantly higher mass loss than richness-reduced diversity. In contrast, richness-reduced diversity increased wood pH. The bacterial community composition was less affected by richness reduction and temperature regimes than the fungal community composition. Microbial interaction patterns showed more mutual exclusions in richness-reduced compared to natural diversity as the reduction mainly reduced abundant fungal species and disintegrated previous interaction patterns. Microbial communities reassembled in richness-reduced diversity with a focus on nitrate reducing and dinitrogen-fixing bacteria as connectors in the network, indicating their high relevance to reestablish ecosystem functions. Therefore, a stochastic richness reduction was followed by functional trait based reassembly to recover previous ecosystem productivity.
Collapse
Affiliation(s)
- Sarah Muszynski
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Florian Maurer
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Sina Henjes
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Matthias Noll
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| |
Collapse
|
3
|
Kobayashi K, Aoyagi H. Microbial community structure analysis in Acer palmatum bark and isolation of novel bacteria IAD-21 of the candidate division FBP. PeerJ 2019; 7:e7876. [PMID: 31681511 PMCID: PMC6824334 DOI: 10.7717/peerj.7876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The potential of unidentified microorganisms for academic and other applications is limitless. Plants have diverse microbial communities associated with their biomes. However, few studies have focused on the microbial community structure relevant to tree bark. METHODS In this report, the microbial community structure of bark from the broad-leaved tree Acer palmatum was analyzed. Both a culture-independent approach using polymerase chain reaction (PCR) amplification and next generation sequencing, and bacterial isolation and sequence-based identification methods were used to explore the bark sample as a source of previously uncultured microorganisms. Molecular phylogenetic analyses based on PCR-amplified 16S rDNA sequences were performed. RESULTS At the phylum level, Proteobacteria and Bacteroidetes were relatively abundant in the A. palmatum bark. In addition, microorganisms from the phyla Acidobacteria, Gemmatimonadetes, Verrucomicrobia, Armatimonadetes, and candidate division FBP, which contain many uncultured microbial species, existed in the A. palmatum bark. Of the 30 genera present at relatively high abundance in the bark, some genera belonging to the phyla mentioned were detected. A total of 70 isolates could be isolated and cultured using the low-nutrient agar media DR2A and PE03. Strains belonging to the phylum Actinobacteria were isolated most frequently. In addition, the newly identified bacterial strain IAP-33, presumed to belong to Acidobacteria, was isolated on PE03 medium. Of the isolated bacteria, 44 strains demonstrated less than 97% 16S rDNA sequence-similarity with type strains. Molecular phylogenetic analysis of IAD-21 showed the lowest similarity (79%), and analyses suggested it belongs to candidate division FBP. Culture of the strain IAD-21 was deposited in Japan Collection of Microorganisms (JCM) and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) as JCM 32665 and DSM 108248, respectively. DISCUSSION Our results suggest that a variety of uncultured microorganisms exist in A. palmatum bark. Microorganisms acquirable from the bark may prove valuable for academic pursuits, such as studying microbial ecology, and the bark might be a promising source of uncultured bacterial isolates.
Collapse
Affiliation(s)
- Kazuki Kobayashi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Aoyagi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Oshkin IY, Kulichevskaya IS, Rijpstra WIC, Sinninghe Damsté JS, Rakitin AL, Ravin NV, Dedysh SN. Granulicella sibirica sp. nov., a psychrotolerant acidobacterium isolated from an organic soil layer in forested tundra, West Siberia. Int J Syst Evol Microbiol 2019; 69:1195-1201. [PMID: 30775959 DOI: 10.1099/ijsem.0.003290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An isolate of strictly aerobic, pale-pink pigmented bacteria, strain AF10T, was obtained from an organic soil layer in forested tundra, Nadym region, West Siberia. Cells of strain AF10T were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance and formed large cell aggregates in old cultures. These bacteria were chemoorganotrophic, mildly acidophilic and psychrotolerant, and grew between pH 3.5 and 7.0 (optimum, pH 4.5-5.0) and at temperatures between 2 and 30 °C. The preferred growth substrates were sugars and some polysaccharides. The major fatty acids were iso-C15 : 0, C16 : 0, C16 : 1∆9 c and 13,16-dimethyl octacosanedioic acid. The genome of strain AF10T was 6.14 Mbp in size and encoded a wide repertoire of carbohydrate active enzymes. The genomic DNA G+C content was 59.8 mol%. Phylogenetic analysis indicated that strain AF10T is a member of the genus Granulicella, family Acidobacteriaceae, but displays 94.4-98.0 % 16S rRNA gene sequence similarity to currently described members of this genus. On the basis of phenotypic, chemotaxonomic, phylogenetic and genomic analyses, we propose to classify this bacterium as representing a novel species of the genus Granulicella, Granulicellasibirica sp. nov. Strain AF10T (=DSM 104461T=VKM B-3276T) is the type strain.
Collapse
Affiliation(s)
- Igor Y Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, 1790 AB Den Burg, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, 1790 AB Den Burg, The Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Geochemistry, Utrecht University, Utrecht, The Netherlands
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
5
|
Tamazawa S, Mayumi D, Mochimaru H, Sakata S, Maeda H, Wakayama T, Ikarashi M, Kamagata Y, Tamaki H. Petrothermobacter organivorans gen. nov., sp. nov., a thermophilic, strictly anaerobic bacterium of the phylum Deferribacteres isolated from a deep subsurface oil reservoir. Int J Syst Evol Microbiol 2017; 67:3982-3986. [PMID: 28893364 DOI: 10.1099/ijsem.0.002234] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, anaerobic, chemoheterotrophic, acetate-oxidizing and iron(III)-, manganese(IV)-, nitrate- and sulfate-reducing bacterium, designated strain ANAT, was isolated from a deep subsurface oil field in Japan (Yabase oil field, Akita Pref.). Cells of strain ANAT were Gram-stain-negative, non-motile, non-spore forming and slightly curved or twisted rods (1.5-5.0 µm long and 0.6-0.7 µm wide). The isolate grew at 25-60 °C (optimum 55 °C) and pH 6.0-8.0 (optimum pH 7.0). The isolate was capable of reducing iron(III), manganese(IV), nitrate and sulfate as an electron acceptor. The isolate utilized a limited range of electron donors such as acetate, lactate, pyruvate and yeast extract for iron reduction. Strain ANAT also used pyruvate, fumarate, succinate, malate, yeast extract and peptone for fermentative growth. The major respiratory quinones were menaquinone-7(H8) and menaquinone-8. The strain contained C18 : 0, iso-C18 : 0 and C16 : 0 as the major cellular fatty acids. The G+C content of the genomic DNA was 34.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain ANAT was closely related to Calditerrivibrio nitroreducens in the phylum Deferribacteres with low sequence similarities (89.5 %), and formed a distinct clade within the family Deferribacteraceae. In addition, the isolate is the first sulfate-reducing member of the phylum Deferribacteres. Based on phenotypic, chemotaxonomic and phylogenetic properties, a novel genus and species, Petrothermobacter organivorans gen. nov., sp. nov., is proposed for the isolate (type strain=ANAT= NBRC 112621T=DSM 105015T).
Collapse
Affiliation(s)
- Satoshi Tamazawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | - Hanako Mochimaru
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | - Haruo Maeda
- INPEX CORPORATION, 5-3-1, Akasaka, Minato, Tokyo, Japan
| | | | | | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front Microbiol 2016; 7:744. [PMID: 27303369 PMCID: PMC4885859 DOI: 10.3389/fmicb.2016.00744] [Citation(s) in RCA: 479] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/03/2016] [Indexed: 12/01/2022] Open
Abstract
The phylum Acidobacteria is one of the most widespread and abundant on the planet, yet remarkably our knowledge of the role of these diverse organisms in the functioning of terrestrial ecosystems remains surprisingly rudimentary. This blatant knowledge gap stems to a large degree from the difficulties associated with the cultivation of these bacteria by classical means. Given the phylogenetic breadth of the Acidobacteria, which is similar to the metabolically diverse Proteobacteria, it is clear that detailed and functional descriptions of acidobacterial assemblages are necessary. Fortunately, recent advances are providing a glimpse into the ecology of members of the phylum Acidobacteria. These include novel cultivation and enrichment strategies, genomic characterization and analyses of metagenomic DNA from environmental samples. Here, we couple the data from these complementary approaches for a better understanding of their role in the environment, thereby providing some initial insights into the ecology of this important phylum. All cultured acidobacterial type species are heterotrophic, and members of subdivisions 1, 3, and 4 appear to be more versatile in carbohydrate utilization. Genomic and metagenomic data predict a number of ecologically relevant capabilities for some acidobacteria, including the ability to: use of nitrite as N source, respond to soil macro-, micro nutrients and soil acidity, express multiple active transporters, degrade gellan gum and produce exopolysaccharide (EPS). Although these predicted properties allude to a competitive life style in soil, only very few of these prediction shave been confirmed via physiological studies. The increased availability of genomic and physiological information, coupled to distribution data in field surveys and experiments, should direct future progress in unraveling the ecology of this important but still enigmatic phylum.
Collapse
Affiliation(s)
- Anna M Kielak
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| | - Cristine C Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília Brasília, Brazil
| | - George A Kowalchuk
- Ecology and Biodiversity Group, University of Utrecht Utrecht, Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| |
Collapse
|
7
|
Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK, Overmann J. The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 2016; 66:2971-2979. [PMID: 27150379 DOI: 10.1099/ijsem.0.001131] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the phylum Acidobacteria are abundant in a wide variety of soil environments. Despite this, previous cultivation attempts have frequently failed to retrieve representative phylotypes of Acidobacteria, which have, therefore, been discovered by culture-independent methods (13175 acidobacterial sequences in the SILVA database version 123; NR99) and only 47 species have been described so far. Strain Ac_5_C6T represents the first isolate of the globally widespread and abundant subdivision 6 Acidobacteria and is described in the present study. Cells of strain Ac_5_C6T were Gram-stain-negative, immotile rods that divided by binary fission. They formed yellow, extremely cohesive colonies and stable aggregates even in rapidly shaken liquid cultures. Ac_5_C6T was tolerant of a wide range of temperatures (12-40 °C) and pH values (4.7-9.0). It grew chemoorganoheterotrophically on a broad range of substrates including different sugars, organic acids, nucleic acids and complex proteinaceous compounds. The major fatty acids of Ac_5_C6T were iso-C17 : 1 ω9c, C18 : 1 ω7c and iso-C15 : 0. Summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), iso-C17 : 0 and C16 : 0 were also detected. Phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid were identified as polar lipids. The major quinone was MK-8. The DNA G+C content of Ac_5_C6T was 65.9 mol%. With 16S rRNA gene sequence similarities of 83-84 %, the closest described relatives were Acidicapsa borealis KA1T, Acidobacterium capsulatum 161T, Granulicella pectinovorans TPB6011T, Occallatibacter riparius 277T and Paludibaculum fermentans P105T. According to the morphological, physiological and molecular characteristics, the novel genus Vicinamibacter gen. nov., and the novel species, Vicinamibacter silvestris sp. nov. (type strain Ac_5_C6T = DSM 29464T = LMG 29035T) are proposed.
Collapse
Affiliation(s)
- Katharina J Huber
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Alicia M Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Bärbel U Fösel
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pia K Wüst
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
8
|
Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE. Bacterial Community Succession in Pine-Wood Decomposition. Front Microbiol 2016; 7:231. [PMID: 26973611 PMCID: PMC4771932 DOI: 10.3389/fmicb.2016.00231] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.
Collapse
Affiliation(s)
- Anna M Kielak
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Tanja R Scheublin
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Lucas W Mendes
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology Wageningen, Netherlands
| |
Collapse
|
9
|
Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534-44. [DOI: 10.1016/j.syapm.2015.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/15/2023]
|
10
|
Foesel BU, Mayer S, Luckner M, Wanner G, Rohde M, Overmann J. Occallatibacter riparius gen. nov., sp. nov. and Occallatibacter savannae sp. nov., acidobacteria isolated from Namibian soils, and emended description of the family Acidobacteriaceae. Int J Syst Evol Microbiol 2015; 66:219-229. [PMID: 26486590 DOI: 10.1099/ijsem.0.000700] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Three Gram-negative, non-spore-forming, encapsulated bacteria were isolated from a Namibian river-bank soil (strains 277T and 307) and a semiarid savannah soil (strain A2-1cT). 16S rRNA gene sequence analyses placed them within subdivision 1 of the Acidobacteria and revealed 100 % similarity between strains 277T and 307 and 98.2 % similarity between A2-1cT and the former two strains. The closest relatives with validly published names were Telmatobacter bradus, Acidicapsa borealis and Acidicapsa ligni (94.7-95.9 % similarity to the type strains). Cells of all three strains were rod-shaped and motile and divided by binary fission. Ultrastructural analyses revealed a thick cell envelope, resulting mainly from a thick periplasmic space. Colonies of strains 277T and 307 were white to cream and light pink, respectively, while strain A2-1cT displayed a bright pink colour. All three strains were aerobic, chemoheterotrophic mesophiles with a broad temperature range for growth and a moderately acidic pH optimum. Sugars and complex proteinaceous substrates were the preferred carbon and energy sources. A few polysaccharides were degraded. The major quinone in all three strains was MK-8; MK-7 occurred in strain A2-1cT as a minor compound. Major fatty acids were iso-C15 : 0 and iso-C17 : 1ω7c. In addition, iso-C17 : 0 occurred in significant amounts. The DNA G+C contents of strains 277T, 307 and A2-1cT were 59.6, 59.9 and 58.5 mol%, respectively. Based on these characteristics, the three isolates are assigned to two novel species of the novel genus Occallatibacter gen. nov., Occallatibacter riparius sp. nov. [type strain 277T ( = DSM 25168T = LMG 26948T) and reference strain 307 ( = DSM 25169 = LMG 26947)] and Occallatibacter savannae sp. nov. [type strain A2-1cT ( = DSM 25170T = LMG 26946T)]. Together with several other recently described taxa, the novel isolates provide the basis for an emended description of the established family Acidobacteriaceae.
Collapse
Affiliation(s)
- Bärbel U Foesel
- Department of Biology I, Großhaderner Straße 2-4, D-82152 Martinsried, Germany.,Department of Microbial Ecology and Diversity Research, Leibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Susanne Mayer
- Department of Biology I, Großhaderner Straße 2-4, D-82152 Martinsried, Germany
| | - Manja Luckner
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, D-82152 Martinsried, Germany
| | - Gerhard Wanner
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, D-82152 Martinsried, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Department of Biology I, Großhaderner Straße 2-4, D-82152 Martinsried, Germany.,Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|