1
|
Miyazaki U, Mizutani D, Hashimoto Y, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Helicovermis profundi gen. nov., sp. nov., a novel mesophilic, asporogenous bacterium within the Clostridia isolated from a deep-sea hydrothermal vent chimney. Antonie Van Leeuwenhoek 2024; 117:24. [PMID: 38217723 DOI: 10.1007/s10482-023-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).
Collapse
Affiliation(s)
- Urara Miyazaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daiki Mizutani
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akihiro Tame
- Depertment of Marine and Earth Sciences, Marine Works Japan Ltd, 3-54-1 Oppamahigashi, Yokosuka, 237-0063, Japan
- General Affairs Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Ken Takai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan.
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
2
|
Brioukhanov AL, Kadnikov VV, Beletsky AV, Savvichev AS. Aerotolerant Thiosulfate-Reducing Bacterium Fusibacter sp. Strain WBS Isolated from Littoral Bottom Sediments of the White Sea-Biochemical and Genome Analysis. Microorganisms 2023; 11:1642. [PMID: 37512815 PMCID: PMC10386464 DOI: 10.3390/microorganisms11071642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The strain WBS, an anaerobic, psychro- and halotolerant bacterium belonging to the genus Fusibacter, was isolated from the littoral bottom sediments of the White Sea, Arctic, Russia. Fusibacter bizertensis WBS grew at temperatures between 8 and 32 °C (optimum growth at 18-20 °C), pH between 5.2 and 8.3 (optimum growth at pH 7.2), and at NaCl concentrations between 0 and 70 g L-1 (optimum growth at 32 g L-1). It reduced sulfate, thiosulfate, and elemental sulfur into sulfide, and, probably, the strain is able to disproportionate thiosulfate. The strain also utilized a wide range of substrates as it is a chemoorganotrophic bacterium. Analysis of the sequenced genome revealed genes for all enzymes involved in the Embden-Meyerhof glycolytic pathway as well as genes for the non-oxidative stage of the pentose phosphate pathway. The presence of genes encoding aldehyde dehydrogenases and alcohol dehydrogenases also suggests that, in addition to acetate, alcohols can also be the fermentation products. The strain possessed superoxide dismutase and peroxidase activities and the ability to consume O2, which is in full accordance with the presence of corresponding genes of antioxidant defense in the genome. The phylogenetic analysis suggested that the strain WBS is the closest relative of Fusibacter bizertensis LTF Kr01T (16S rRNA gene sequence similarity 98.78%). Based on biochemical and genomic characteristics, the strain WBS is proposed to represent a novel aero-, halo- and psychrotolerant strain from the genus Fusibacter, isolated for the first time among its members from cold oxygenated marine bottom sediments.
Collapse
Affiliation(s)
| | - Vitaly V Kadnikov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Alexey V Beletsky
- Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Alexander S Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia
| |
Collapse
|
3
|
Jang Y, Lee SH, Kim NK, Ahn CH, Rittmann BE, Park HD. Biofilm characteristics for providing resilient denitrification in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2023; 231:119654. [PMID: 36702020 DOI: 10.1016/j.watres.2023.119654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In a hydrogen-based membrane biofilm reactor (H2-MBfR), the biofilm thickness is considered to be one of the most important factors for denitrification. Thick biofilms in MBfRs are known for low removal fluxes owing to their resistance to substrate transport. In this study, the H2-MBfR was operated under various loading rates of oxyanions, such as NO3-N, SO4-S, and ClO4- at an H2 flux of 1.06 e- eq/m2-d. The experiment was initiated with NO3-N, SO4-S, and ClO4- loadings of 0.464, 0.026, and 0.211 e- eq/m2-d, respectively, at 20 °C. Under the most stressful conditions, the loading rates increased simultaneously to 1.911, 0.869, and 0.108 e- eq/m2-d, respectively, at 10 °C. We observed improved performance in significantly thicker biofilms (approximately 2.7 cm) compared to previous studies using a denitrifying H2-MBfR for 120 days. Shock oxyanion loadings led to a decrease in total nitrogen (TN) removal by 20 to 30%, but TN removal returned to 100% within a few days. Similarly, complete denitrification was observed, even at 10 °C. The protective function and microbial diversity of the thick biofilm may allow stable denitrification despite stress-imposing conditions. In the microbial community analysis, heterotrophs were dominant and acetogens accounted for 11% of the biofilm. Metagenomic results showed a high abundance of functional genes involved in organic carbon metabolism and homoacetogenesis. Owing to the presence of organic compounds produced by acetogens and autotrophs, heterotrophic denitrification may occur simultaneously with autotrophic denitrification. As a result, the total removal flux of oxyanions (1.84 e- eq/m2-d) far exceeded the H2 flux (1.06 e- eq/m2-d). Thus, the large accumulation of biofilms could contribute to good resilience and enhanced removal fluxes.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na-Kyung Kim
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chang Hoon Ahn
- The graduate school of construction engineering, Chung-ang University, Seoul, 06974, Republic of Korea
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States of America.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Acosta-Grinok M, Vázquez S, Guiliani N, Marín S, Demergasso C. Looking for the mechanism of arsenate respiration of Fusibacter sp. strain 3D3, independent of ArrAB. Front Microbiol 2022; 13:1029886. [PMID: 36532432 PMCID: PMC9751042 DOI: 10.3389/fmicb.2022.1029886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The literature has reported the isolation of arsenate-dependent growing microorganisms which lack a canonical homolog for respiratory arsenate reductase, ArrAB. We recently isolated an arsenate-dependent growing bacterium from volcanic arsenic-bearing environments in Northern Chile, Fusibacter sp. strain 3D3 (Fas) and studied the arsenic metabolism in this Gram-positive isolate. Features of Fas deduced from genome analysis and comparative analysis with other arsenate-reducing microorganisms revealed the lack of ArrAB coding genes and the occurrence of two arsC genes encoding for putative cytoplasmic arsenate reductases named ArsC-1 and ArsC-2. Interestingly, ArsC-1 and ArsC-2 belong to the thioredoxin-coupled family (because of the redox-active disulfide protein used as reductant), but they conferred differential arsenate resistance to the E. coli WC3110 ΔarsC strain. PCR experiments confirmed the absence of arrAB genes and results obtained using uncouplers revealed that Fas growth is linked to the proton gradient. In addition, Fas harbors ferredoxin-NAD+ oxidoreductase (Rnf) and electron transfer flavoprotein (etf) coding genes. These are key molecular markers of a recently discovered flavin-based electron bifurcation mechanism involved in energy conservation, mainly in anaerobic metabolisms regulated by the cellular redox state and mostly associated with cytoplasmic enzyme complexes. At least three electron-bifurcating flavoenzyme complexes were evidenced in Fas, some of them shared in conserved genomic regions by other members of the Fusibacter genus. These physiological and genomic findings permit us to hypothesize the existence of an uncharacterized arsenate-dependent growth metabolism regulated by the cellular redox state in the Fusibacter genus.
Collapse
Affiliation(s)
| | - Susana Vázquez
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina,Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Guiliani
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Antofagasta, Chile
| | - Sabrina Marín
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile
| | - Cecilia Demergasso
- Biotechnology Center, Universidad Católica del Norte, Antofagasta, Chile,Nucleus for the Study of Cancer at a Basic, Applied, and Clinical Level, Universidad Católica del Norte, Antofagasta, Chile,*Correspondence: Cecilia Demergasso,
| |
Collapse
|
5
|
Govindarajan A, Crum M, Adolacion J, Kiaghadi A, Acuña-Gonzalez E, Rifai HS, Willson RC. Sediment and their bacterial communities in an industrialized estuary after Hurricane Harvey. MARINE POLLUTION BULLETIN 2022; 175:113359. [PMID: 35124375 DOI: 10.1016/j.marpolbul.2022.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.
Collapse
Affiliation(s)
| | - Mary Crum
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay Adolacion
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Mexico
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Edgar Acuña-Gonzalez
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| | - Richard C Willson
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
6
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
7
|
Qiu D, Zeng X, Zeng L, Li G, Shao Z. Fusibacter ferrireducens sp. nov., an anaerobic, Fe(Ⅲ)- and sulphur-reducing bacterium isolated from mangrove sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 34739363 DOI: 10.1099/ijsem.0.004952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, alkaliphilic, halotolerant, Gram-stain-positive and rod-shaped bacterium, designated Q10-2T, was isolated from mangrove sediment sampled at the Jiulong river estuary, PR China. The cells of strain Q10-2T were motile and 0.5×2-4 µm in size. Strain Q10-2T grew at 8-45 °C (optimum, 32 °C), at pH 7.0-10.5 (optimum, pH 8.5) and in the presence of 0-6 % (w/v) NaCl (optimum, 3 %). It could use complex organic compounds and carbohydrates including d-fructose, d-galactose, d-glucose, d-mannitol, d-xylose, trehalose, lactose, maltose, sucrose and starch as carbon sources and electron donors. It could reduce sulphate, thiosulphate and elemental sulphur to sulphide, but not sulphite. Fe (Ⅲ) citrate, ferrihydrite, haematite and goethite in the presence of glucose as the electron donor were also reduced. Acetate, butyrate, ethanol, CO2 and H2 were end products of glucose fermentation. The predominant cellular fatty acids were composed of C14 : 0, C16 : 0 and summed features containing C16 : 1 ω7c and/or iso-C15 : 0 2-OH and iso-C17 : 1 and/or anteiso-C17 : 1 B. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain was most closely related to Fusibacter paucivorans DSM 12116T (95.5 % sequence similarity). The genome size of strain Q10-2T was 5.0 Mb, with a G+C content of 37.4 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain Q10-2T and F. paucivorans DSM 12116T were 69.1 and 21.8 %, respectively. The combined genotypic and phenotypic data showed that strain Q10-2T represents a novel species of the genus Fusibacter, for which the name Fusibacter ferrireducens sp. nov. is proposed. The type strain is Q10-2T (=MCCC 1A16257T=KCTC 15906T).
Collapse
Affiliation(s)
- Donghua Qiu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resource, Xiamen 361005, PR China
| | - Xiang Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resource, Xiamen 361005, PR China
| | - Lingyu Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resource, Xiamen 361005, PR China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resource, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resource, Xiamen 361005, PR China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China
| |
Collapse
|
8
|
Morono Y, Wishart JR, Ito M, Ijiri A, Hoshino T, Torres M, Verba C, Terada T, Inagaki F, Colwell FS. Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale. Front Microbiol 2019; 10:376. [PMID: 30915042 PMCID: PMC6422894 DOI: 10.3389/fmicb.2019.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/13/2019] [Indexed: 11/29/2022] Open
Abstract
Hydraulic fracturing is a prominent method of natural gas production that uses injected, high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale. Upon completion of a well, the fluid returns to the surface (produced water) and contains natural gas, subsurface constituents, and microorganisms (Barbot et al., 2013; Daly et al., 2016). While the microbial community of the produced fluids has been studied in multiple gas wells, the activity of these microorganisms and their relation to biogeochemical activity is not well understood. In this experiment, we supplemented produced fluid with 13C-labeled carbon sources (glucose, acetate, bicarbonate, methanol, or methane), and 15N-labeled ammonium chloride in order to isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images of 13C and 15N incorporation in individual cells, while isotope ratio monitoring–gas chromatography–mass spectrometry (IRM–GC–MS) was used to measure 13CO2, and 13CH4 as metabolic byproducts. Glucose, acetate, and methanol were all assimilated by microorganisms under anoxic conditions. 13CO2 production was only observed with glucose as a substrate indicating that catabolic activity was limited to this condition. The microbial communities observed at 0, 19, and 32 days of incubation did not vary between different carbon sources, were low in diversity, and composed primarily of the class Clostridia. The primary genera detected in the incubations, Halanaerobium and Fusibacter, are known to be adapted to harsh physical and chemical conditions consistent with those that occur in the hydrofracturing environment. This study provides evidence that microorganisms in produced fluid are revivable in laboratory incubations and retained the ability to metabolize added carbon and nitrogen substrates.
Collapse
Affiliation(s)
- Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jessie R Wishart
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Akira Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Marta Torres
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Circe Verba
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | | | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Perez Calderon LJ, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiologyopen 2018; 8:e00768. [PMID: 30444300 PMCID: PMC6562134 DOI: 10.1002/mbo3.768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Hatton-Rockall Basin (North-East Atlantic) is an area with potential for deep-sea (2,900 m) hydrocarbon exploration. Following the Deepwater Horizon oil spill, many investigations into the responses of sediment microbial communities to oil pollution have been undertaken. However, hydrostatic pressure is a parameter that is often omitted due to the technical difficulties associated with conducting experiments at high pressure (>10 MPa). In this study, sediments from 2,900 m in the Hatton-Rockall Basin, following a one-week decompression period in a temperature-controlled room at 5°C, were incubated in factorial combinations of 0.1 and 30 MPa, 5 and 20°C, and contamination with a hydrocarbon mixture or uncontaminated controls to evaluate the effect of these environmental variables on the bacterial community composition. Our results revealed varying effects of pressure, temperature, and oil contamination on the composition of the bacterial community within the sediment. Temperature was the strongest determinant of differences in the bacterial community structure between samples followed by pressure. Oil contamination did not exert a strong change in the sediment bacterial community structure when pressure and temperature conditions were held at in situ levels (30 MPa and 5°C). The γ-proteobacteria Pseudomonas and Colwellia, and several Bacteroidetes dominated communities at 30 MPa. In contrast, hydrocarbon degraders such as Halomonas, Alcanivorax, and Marinobacter decreased in relative abundance at the same pressure. This study highlights the importance of considering hydrostatic pressure in ex situ investigations into hydrocarbon-degrading deepwater microbial communities.
Collapse
Affiliation(s)
- Luis J Perez Calderon
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK.,Marine Laboratory Aberdeen, Marine Scotland Science, Aberdeen, UK
| | - Evangelia Gontikaki
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Lloyd D Potts
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - James A Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Ursula Witte
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, Friedrich MW. Temperature Controls Crystalline Iron Oxide Utilization by Microbial Communities in Methanic Ferruginous Marine Sediment Incubations. Front Microbiol 2018; 9:2574. [PMID: 30425692 PMCID: PMC6218420 DOI: 10.3389/fmicb.2018.02574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms can use crystalline iron minerals for iron reduction linked to organic matter degradation or as conduits for direct interspecies electron transfer (mDIET) to syntrophic partners, e.g., methanogens. The environmental conditions that lead either to reduction or conduit use are so far unknown. We investigated microbial community shifts and interactions with crystalline iron minerals (hematite and magnetite) in methanic ferruginous marine sediment incubations during organic matter (glucose) degradation at varying temperatures. Iron reduction rates increased with decreasing temperature from 30°C to 4°C. Both hematite and magnetite facilitated iron reduction at 4°C, demonstrating that microorganisms in the methanic zone of marine sediments can reduce crystalline iron oxides under psychrophilic conditions. Methanogenesis occurred, however, at higher rates with increasing temperature. At 30°C, both hematite and magnetite accelerated methanogenesis onset and maximum process rates. At lower temperatures (10°C and 4°C), hematite could still facilitate methanogenesis but magnetite served more as an electron acceptor for iron reduction than as a conduit. Different temperatures selected for different key microorganisms: at 30°C, members of genus Orenia, Halobacteroidaceae, at 10°C, Photobacterium and the order Clostridiales, and at 4°C Photobacterium and Psychromonas were enriched. Members of the order Desulfuromonadales harboring known dissimilatory iron reducers were also enriched at all temperatures. Our results show that crystalline iron oxides predominant in some natural environments can facilitate electron transfer between microbial communities at psychrophilic temperatures. Furthermore, temperature has a critical role in determining the pathway of crystalline iron oxide utilization in marine sediment shifting from conduction at 30°C to predominantly iron reduction at lower temperatures.
Collapse
Affiliation(s)
- David A Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,International Max Planck Research School for Marine Microbiology, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Oluwatobi E Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Ajinkya Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,International Max Planck Research School for Marine Microbiology, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,International Max Planck Research School for Marine Microbiology, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Sabine Kasten
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Cheng C, Zhou Z, Qiu Z, Yang J, Wu W, Pang H. Enhancement of sludge reduction by ultrasonic pretreatment and packing carriers in the anaerobic side-stream reactor: Performance, sludge characteristics and microbial community structure. BIORESOURCE TECHNOLOGY 2018; 249:298-306. [PMID: 29054059 DOI: 10.1016/j.biortech.2017.10.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Effects of ultrasonic pretreatment and packing carriers on sludge reduction, settleability, dewaterability and microbial community structure in the anaerobic side-stream reactor (ASSR) were investigated with three anaerobic reactors operated in parallel. Ultrasonication from 3.65% in the ASSR to 5.08%, and packing carriers further enhanced the efficiency to 19.2%. Ultrasonic pretreatment of sludge decreased oxidation-reduction potential in ASSR and enhanced the release of intracellular substances. The deterioration of sludge settleability and dewaterability in the ASSR after ultrasonic pretreatment was improved by packing carriers. Illumina-MiSeq sequencing showed that microbial richness and diversity increased after ultrasonic pretreatment and packing carriers in the ASSR. Packing carriers favored the growth of slow grower (Dechloromonas), fermentative bacteria (Draconibacteriaceae, Fusibacter, Acidaminobacter) and floc-forming bacteria (Zoogloea), while hydrolytic and predatory bacteria (Saprospiraceae_unculture) and slow grower (Thauera) was enriched in the ASSR.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Zhan Qiu
- Shanghai Chentou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Jiyuan Yang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Wei Wu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hongjian Pang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
12
|
Serrano AE, Escudero LV, Tebes-Cayo C, Acosta M, Encalada O, Fernández-Moroso S, Demergasso C. First draft genome sequence of a strain from the genus Fusibacter isolated from Salar de Ascotán in Northern Chile. Stand Genomic Sci 2017; 12:43. [PMID: 28770028 PMCID: PMC5525254 DOI: 10.1186/s40793-017-0252-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Fusibacter sp. 3D3 (ATCC BAA-2418) is an arsenate-reducing halotolerant strain within the Firmicutes phylum, isolated from the Salar de Ascotán, a hypersaline salt flat in Northern Chile. This high-Andean closed basin is an athalassohaline environment located at the bottom of a tectonic basin surrounded by mountain range, including some active volcanoes. This landscape can be an advantageous system to explore the effect of salinity on microorganisms that mediate biogeochemical reactions. Since 2000, microbial reduction of arsenic has been evidenced in the system, and the phylogenetic analysis of the original community plus the culture enrichments has revealed the predominance of Firmicutes phylum. Here, we describe the first whole draft genome sequence of an arsenic-reducing strain belonging to the Fusibacter genus showing the highest 16S rRNA gene sequence similarity (98%) with Fusibacter sp. strain Vns02. The draft genome consists of 57 contigs with 5,111,250 bp and an average G + C content of 37.6%. Out of 4780 total genes predicted, 4700 genes code for proteins and 80 genes for RNAs. Insights from the genome sequence and some microbiological features of the strain 3D3 are available under Bioproject accession PRJDB4973 and Biosample SAMD00055724. The release of the genome sequence of this strain could contribute to the understanding of the arsenic biogeochemistry in extreme environments.
Collapse
Affiliation(s)
- Antonio E Serrano
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Lorena V Escudero
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| | - Cinthya Tebes-Cayo
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Mauricio Acosta
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | - Olga Encalada
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
| | | | - Cecilia Demergasso
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| |
Collapse
|
13
|
Fadhlaoui K, Ben Hania W, Postec A, Fauque G, Hamdi M, Ollivier B, Fardeau ML. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int J Syst Evol Microbiol 2015; 65:3501-3506. [DOI: 10.1099/ijsem.0.000445] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain KhalAKB1T, a mesophilic, anaerobic, rod-shaped bacterium, was isolated from water collected from a mesothermic Tunisian spring. Cells were Gram-staining-positive rods, occurring singly or in pairs and motile by one lateral flagellum. Strain KhalAKB1T grew at 15–45 °C (optimum 30 °C), at pH 5.5–8.5 (optimum pH 7.0) and in the presence of 0–35 g NaCl l− 1 (optimum 1 g NaCl l− 1). It fermented yeast extract and a wide range of carbohydrates including cellobiose, d-glucose, d-ribose, sucrose, d-xylose, maltose, d-galactose and starch as electron donors. Acetate, ethanol, CO2 and H2 were end products of glucose metabolism. It reduced elemental sulfur, but not sulfate, thiosulfate or sulfite, into sulfide. The DNA G+C content was 37.6 mol%. The predominant cellular fatty acids were C14 : 0 and C16 : 0. Phylogenetic analysis of the 16S rRNA gene sequence suggested Fusibacter bizertensis as the closest relative of this isolate (identity of 97.2 % to the type strain). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain KhalAKB1T is proposed to be assigned to a novel species within the genus Fusibacter, order Clostridiales, Fusibacter fontis sp. nov. The type strain is KhalAKB1T ( = DSM 28450T = JCM 19912T).
Collapse
Affiliation(s)
- Khaled Fadhlaoui
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
- Laboratoire d'Ecologie et de Technologie Microbienne, Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis, Université de Carthage, Tunisia
| | - Wajdi Ben Hania
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
- Laboratoire d'Ecologie et de Technologie Microbienne, Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis, Université de Carthage, Tunisia
| | - Anne Postec
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
| | - Guy Fauque
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
| | - Moktar Hamdi
- Laboratoire d'Ecologie et de Technologie Microbienne, Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis, Université de Carthage, Tunisia
| | - Bernard Ollivier
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
| | - Marie-Laure Fardeau
- Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France
| |
Collapse
|