1
|
Wang J, Li X, Jin H, Yang S, Yu L, Wang H, Huang S, Liao H, Wang X, Yan J, Yang Y. CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination. MICROBIOME 2024; 12:154. [PMID: 39160636 PMCID: PMC11334346 DOI: 10.1186/s40168-024-01869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.
Collapse
Grants
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No.2023004 Zhiyuan Science Foundation of BIPT
- Grant No. 2019YFC1804400 National Key Research and Development Program of China
- Grant No. ZDBS-LY-DQC038 Key Research Program of Frontier Science, Chinese Academy of Sciences
- Grant No. 2021-MS-026 Natural Science Foundation of Liaoning Province of China
- Grant No. IAEMP202201 Major Program of Institute of Applied Ecology, Chinese Academy of Sciences
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shujing Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 117004, China
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Liao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhao Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
DePoy AN, King GM. Putative Nickel-Dependent Anaerobic Carbon Monoxide Uptake Occurs Commonly in Soils and Sediments at Ambient Temperature and Might Contribute to Atmospheric and Sub-Atmospheric Carbon Monoxide Uptake During Anoxic Conditions. Front Microbiol 2022; 13:736189. [PMID: 35401450 PMCID: PMC8987735 DOI: 10.3389/fmicb.2022.736189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon monoxide (CO) occurs naturally in the atmosphere where it plays a critical role in tropospheric chemistry. Atmospheric CO uptake by soils has been well documented as an important CO sink and has been attributed to a group of aerobic bacteria that possess a molybdenum-dependent CO dehydrogenase (Mo-CODH). CO can also be oxidized by obligate Ni-dependent anaerobes (Ni-COX) that possess nickel-dependent CODHs (Ni-CODH) but relatively little is known about their ecology or their potential to contribute to CO dynamics within soils and sediments or to soil-atmosphere CO exchanges. Results from a series of assays undertaken with diverse soils and sediments and CO concentrations of 10 ppm and 25% with incubation temperatures of 10, 25, and 60°C revealed anaerobic uptake rates with 10 ppm CO that were comparable to those measured under oxic conditions; further, anaerobic CO uptake occurred without a lag and at atmospheric and sub-atmospheric CO concentrations. Assays with 25% CO revealed previously undocumented activity at 10°C and showed extensive activity at 25°C. Results from prior studies with isolates and soils suggest that anaerobic uptake at both 10 ppm and 25% CO concentrations might be attributed to Ni-COX. Collectively the results considerably expand the ecological range for Ni-COX and indicate that they could play previously unsuspected roles in soil CO dynamics.
Collapse
|
3
|
Kochetkova TV, Podosokorskaya OA, Elcheninov AG, Kublanov IV. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Bacteriome composition analysis of selected mineral water occurrences in Serbia. ARCH BIOL SCI 2022. [DOI: 10.2298/abs211223005s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial metabarcoding analysis by 16S rDNA of five occurrences of mineral
waters in Serbia (Torda, Slankamen Banja, Lomnicki Kiseljak, Velika Vrbnica
and Obrenovacka Banja) indicated the presence of a high percentage of the
Proteobacteria phylum, followed by the Bacteroidetes phylum. The families
Rhodobacteraceae, Burkholderiaceae, Pseudomonadaceae, Methylophilaceae and
Moraxellaceae were the most dominant in the bacterial flora of the selected
occurrences, whereas the most represented genera were Acinetobacter,
Pseudorhodobacter, Pseudomonas, Limnohabitans, Massilia, Limnobacter and
Methylotenera. The presence of coliform bacteria was not detected. Alpha
diversity analysis revealed that Slankamen Banja and Lomnicki Kiseljak were
the richest of the selected occurrences, while the mineral waters of Torda,
Velika Vrbnica and Obrenovacka Banja were characterized by similar diversity
of bacterial communities determined by beta diversity analysis.
Physical-chemical analysis revealed the value of total dissolved solids
above 1 g/L, as well as elevated concentrations of some metals and
non-metals. The research concluded that specific bacteria contribute to the
development of biocorrosion and biofouling processes of water intake
facilities. In addition, some of these bacteria might be potential
indicators of the organic sources of pollution and/or biotechnological
natural remediators in the treatment of contaminated waters.
Collapse
|
5
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
6
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Rubiano-Labrador C, Díaz-Cárdenas C, López G, Gómez J, Baena S. Colombian Andean thermal springs: reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019; 23:793-808. [PMID: 31555903 DOI: 10.1007/s00792-019-01132-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Anaerobic cultivable microbial communities in thermal springs producing hydrolytic enzymes were studied. Thermal water samples from seven thermal springs located in the Andean volcanic belt, in the eastern and central mountain ranges of the Colombian Andes were used as inocula for the growth and isolation of thermophilic microorganisms using substrates such as starch, gelatin, xylan, cellulose, Tween 80, olive oil, peptone and casamino acids. These springs differed in temperature (50-70 °C) and pH (6.5-7.5). The predominant ion in eastern mountain range thermal springs was sulphate, whereas that in central mountain range springs was bicarbonate. A total of 40 anaerobic thermophilic bacterial strains that belonged to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium were isolated. To investigate the metabolic potential of these isolates, selected strains were analysed for enzymatic activities to identify strains than can produce hydrolytic enzymes. We demonstrated that these thermal springs contained diverse microbial populations of anaerobic thermophilic comprising different metabolic groups of bacteria including strains belonging to the genera Thermoanaerobacter, Caloramator, Anoxybacillus, Caloranaerobacter, Desulfomicrobium, Geotoga, Hydrogenophilus, Desulfacinum and Thermoanaerobacterium with amylases, proteases, lipases, esterases, xylanases and pectinases; therefore, the strains represent a promising source of enzymes with biotechnological potential.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena de Indias D.T. y C., Colombia
| | - Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia.
| | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Javier Gómez
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, 56710, Bogotá DC, Colombia
| |
Collapse
|
8
|
Pavlova ON, Lomakina AV, Novikova AS, Chernitsyna SM, Khanaeva TA, Pogodaeva TV, Khabuev AV, Zemskaya TI. Thermophilic Bacteria in Lake Baikal Bottom Sediments Associated with Hydrocarbon Discharge. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Teng Y, Xu Y, Wang X, Christie P. Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation. Front Microbiol 2019; 10:106. [PMID: 30837956 PMCID: PMC6383490 DOI: 10.3389/fmicb.2019.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 01/30/2023] Open
Abstract
Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
10
|
Dai K, Wen JL, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ. Electricity production and microbial characterization of thermophilic microbial fuel cells. BIORESOURCE TECHNOLOGY 2017; 243:512-519. [PMID: 28697453 DOI: 10.1016/j.biortech.2017.06.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m2, and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future.
Collapse
Affiliation(s)
- Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jun-Li Wen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Xi-Wen Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xiang-Yu Cui
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Qi Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Ting-Jia Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
11
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
12
|
Diender M, Stams AJM, Sousa DZ. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Front Microbiol 2015; 6:1275. [PMID: 26635746 PMCID: PMC4652020 DOI: 10.3389/fmicb.2015.01275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
13
|
Draft Genome Sequence of the Gram-Positive Thermophilic Iron Reducer Thermincola ferriacetica Strain Z-0001T. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01072-15. [PMID: 26404602 PMCID: PMC4582578 DOI: 10.1128/genomea.01072-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 3.19-Mbp draft genome of the Gram-positive thermophilic iron-reducing Firmicutes isolate from the Peptococcaceae family, Thermincola ferriacetica Z-0001, was assembled at ~100× coverage from 100-bp paired-end Illumina reads. The draft genome contains 3,274 predicted genes (3,187 protein coding genes) and putative multiheme c-type cytochromes.
Collapse
|
14
|
Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol 2015; 6:897. [PMID: 26388850 PMCID: PMC4555085 DOI: 10.3389/fmicb.2015.00897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.
Collapse
Affiliation(s)
- Allyson L Brady
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Christine E Sharp
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | | | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
15
|
Abstract
Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome-sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in a nutrient-rich environment. It argues that the systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework.
Collapse
|
16
|
Rittmann SKM, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG. One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 2015; 33:165-177. [DOI: 10.1016/j.biotechadv.2014.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
|
17
|
Alves JI, Stams AJ, Plugge CM, Madalena Alves M, Sousa DZ. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge. FEMS Microbiol Ecol 2013; 86:590-7. [DOI: 10.1111/1574-6941.12185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/09/2013] [Accepted: 07/23/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Joana I. Alves
- IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering; University of Minho; Braga Portugal
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Alfons J.M. Stams
- IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering; University of Minho; Braga Portugal
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - M. Madalena Alves
- IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering; University of Minho; Braga Portugal
| | - Diana Z. Sousa
- IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering; University of Minho; Braga Portugal
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
18
|
Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012; 14:2870-90. [PMID: 22882546 PMCID: PMC3533761 DOI: 10.1111/j.1462-2920.2012.02841.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci U S A 2012; 109:1702-7. [PMID: 22307634 DOI: 10.1073/pnas.1112905109] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.
Collapse
|
20
|
Kleemann R, Meckenstock RU. Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 2011; 78:488-96. [PMID: 22066721 DOI: 10.1111/j.1574-6941.2011.01193.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 11/26/2022] Open
Abstract
An anaerobic naphthalene-degrading culture (N49) was enriched with ferric iron as electron acceptor. A closed electron balance indicated the total oxidation of naphthalene to CO(2). In all growing cultures, the concentration of the presumed central metabolite of naphthalene degradation, 2-naphthoic acid, increased concomitantly with growth. The first metabolite of anaerobic methylnaphthalene degradation, naphthyl-2-methyl-succinic acid, was not identified in culture supernatants, which does not support a methylation to methylnaphthalene as the initial activation reaction of naphthalene, but rather a carboxylation, as proposed for other naphthalene-degrading cultures. Substrate utilization tests revealed that the culture was able to grow on 1-methyl-naphthalene, 2-methyl-naphthalene, 1-naphthoic acid or 2-naphthoic acid, whereas it did not grow on 1-naphthol, 2-naphthol, anthracene, phenanthrene, indane and indene. Terminal restriction fragment length polymorphism and 16S rRNA gene sequence analyses revealed that the microbial community of the culture was dominated by one bacterial microorganism, which was closely related (99% 16S sequence similarity) to the major organism in the iron-reducing, benzene-degrading enrichment culture BF [ISME J (2007) 1: 643; Int J Syst Evol Microbiol (2010) 60: 686]. The phylogenetic classification supports a new candidate species and genus of Gram-positive spore-forming iron-reducers that can degrade non-substituted aromatic hydrocarbons. It furthermore indicates that Gram-positive microorganisms might also play an important role in anaerobic polycyclic aromatic hydrocarbon-degradation.
Collapse
Affiliation(s)
- Rita Kleemann
- Institute for Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | | |
Collapse
|
21
|
Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 2011; 77:7633-9. [PMID: 21908627 DOI: 10.1128/aem.05365-11] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction.
Collapse
|
22
|
Cupples AM. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J Microbiol Methods 2011; 85:83-91. [DOI: 10.1016/j.mimet.2011.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/26/2022]
|
23
|
Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl Microbiol Biotechnol 2011; 90:827-36. [PMID: 21400198 DOI: 10.1007/s00253-011-3188-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.
Collapse
Affiliation(s)
- Abid Hussain
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada H2P 2R2
| | | | | | | | | |
Collapse
|
24
|
Subtilase genes diversity in the biogas digester microbiota. Curr Microbiol 2011; 62:1542-7. [PMID: 21327889 DOI: 10.1007/s00284-011-9876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Biogas digesters contain microbial assemblages that process a mass of extracellular polymeric substances from animal manure and domestic wastewater; however, due to the limitation of available technology in cultivation of majority of the micro-organisms in biogas digesters, the enzymatic potential of these microbial communities remains largely unexplored. In this study, to evaluate subtilase gene diversity in a biogas digester, the partial sequences of the gene were directly amplified from the metagenomic DNA by using consensus-degenerate primers. The desired PCR products were cloned into pGEM-T Easy vector, and thirty positive clones were chose for Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, from which thirteen distinguished patterns were obtained and then sequenced. Phylogenetic analysis showed that ten out of the thirteen sequences were related to the subtilase genes in GenBank and were grouped into three families of the subtilases superfamily. The nucleotide sequences analysis through BLAST search revealed that none of the partial genes the authors isolated showed significant similarity against the non-redundant Nucleotide database of NCBI. Meanwhile, the deduced amino acid sequences of ten partial subtilase genes showed moderate identities to the previously identified sequences in GenBank, with a range from 39 to 61%. Collectively, the data indicate that there is a great diversity of subtilase genes in the biogas digester; and may be a rich reservoir for novel subtilase genes.
Collapse
|
25
|
Complete genome sequence of the electricity-producing "Thermincola potens" strain JR. J Bacteriol 2010; 192:4078-9. [PMID: 20525829 DOI: 10.1128/jb.00044-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Thermincola potens" strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.
Collapse
|
26
|
Tirado-Acevedo O, Chinn MS, Grunden AM. Production of biofuels from synthesis gas using microbial catalysts. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:57-92. [PMID: 20359454 DOI: 10.1016/s0065-2164(10)70002-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.
Collapse
Affiliation(s)
- Oscar Tirado-Acevedo
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
27
|
Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey. Extremophiles 2009; 13:885-94. [PMID: 19701714 PMCID: PMC2767516 DOI: 10.1007/s00792-009-0276-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 08/03/2009] [Indexed: 11/26/2022]
Abstract
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.
Collapse
|
28
|
Karnachuk OV, Gerasimchuk AL, Banks D, Frengstad B, Stykon GA, Tikhonova ZL, Kaksonen A, Puhakka J, Yanenko AS, Pimenov NV. Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709040122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJM, Lebedinsky AV. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 2009; 68:131-41. [PMID: 19573196 DOI: 10.1111/j.1574-6941.2009.00663.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens, hydrogenogens, sulfate reducers, and ferric iron reducers. Most thermophilic CO-oxidizing anaerobes have diverse metabolic capacities, but two hydrogenogenic species are obligate carboxydotrophs. Among known thermophilic carboxydotrophic anaerobes, hydrogenogens are most numerous, and based on available data they are most important in CO biotransformation in hot environments.
Collapse
Affiliation(s)
- Tatyana G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya 7/2, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
30
|
Slepova TV, Sokolova TG, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 2009; 59:213-7. [DOI: 10.1099/ijs.0.000620-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Abstract
Thermophilic anaerobes are Archaea and Bacteria that grow optimally at temperatures of 50 degrees C or higher and do not require the use of O(2) as a terminal electron acceptor for growth. The prokaryotes with this type of physiology are studied for a variety of reasons, including (a) to understand how life can thrive under extreme conditions, (b) for their biotechnological potential, and (c) because anaerobic thermophiles are thought to share characteristics with the early evolutionary life forms on Earth. Over 300 species of thermophilic anaerobes have been described; most have been isolated from thermal environments, but some are from mesobiotic environments, and others are from environments with temperatures below 0 degrees C. In this overview, the authors outline the phylogenetic and physiological diversity of thermophilic anaerobes as currently known. The purpose of this overview is to convey the incredible diversity and breadth of metabolism within this subset of anaerobic microorganisms.
Collapse
Affiliation(s)
- Isaac D Wagner
- 212 Biological Sciences Building, 1000 Cedar Street, University of Georgia, Athens, GA 30602-2605, USA
| | | |
Collapse
|
32
|
Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 2008; 78:147-55. [DOI: 10.1007/s00253-007-1266-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
33
|
Slepova TV, Rusanov II, Sokolova TG, Bonch-Osmolovskaya EA, Pimenov NV. Radioisotopic tracing of carbon monoxide conversion by anaerobic thermophilic prokaryotes. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707050025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Kunapuli U, Lueders T, Meckenstock RU. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME JOURNAL 2007; 1:643-53. [PMID: 18043671 DOI: 10.1038/ismej.2007.73] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, we present a detailed functional and phylogenetic characterization of an iron-reducing enrichment culture maintained in our lab with benzene as sole carbon and energy source. We used DNA-stable isotope probing to identify microbes within the enrichment most active in the assimilation of (13)C-label. When (12)C(6)- and (13)C(6)-benzene were added as comparative substrates, marked differences in the quantitative buoyant density distribution became apparent especially for uncultured microbes within the Gram-positive Peptococcaceae, closely related to environmental clones retrieved from contaminated aquifers world wide and only distantly related to cultured representatives of the genus Thermincola. Prominent among the other constituents of the enrichment were uncultured Deltaproteobacteria, as well as members of the Actinobacteria. Although their presence within the enrichment seems to be stable they did not assimilate (13)C-label as significantly as the Clostridia within the time course of our experiment. We hypothesize that benzene degradation in our enrichment involves an unusual syntrophy, where members of the Clostridia primarily oxidize benzene. Electrons from the contaminant are both directly transferred to ferric iron by the primary oxidizers, but also partially shared with the Desulfobulbaceae as syntrophic partners. Alternatively, electrons may also be quantitatively transferred to the partners, which then reduce the ferric iron. Thus our results provide evidence for the importance of a novel clade of Gram-positive iron-reducers in anaerobic benzene degradation, and a role of syntrophic interactions in this process. These findings shed a totally new light on the factors controlling benzene degradation in anaerobic contaminated environments.
Collapse
Affiliation(s)
- Umakanth Kunapuli
- GSF-National Research Center for Environment and Health, Institute of Groundwater Ecology, Neuherberg, Germany
| | | | | |
Collapse
|
35
|
Henstra AM, Sipma J, Rinzema A, Stams AJM. Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 2007; 18:200-6. [PMID: 17399976 DOI: 10.1016/j.copbio.2007.03.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 02/20/2007] [Accepted: 03/21/2007] [Indexed: 11/29/2022]
Abstract
A significant portion of biomass sources like straw and wood is poorly degradable and cannot be converted to biofuels by microorganisms. The gasification of this waste material to produce synthesis gas (or syngas) could offer a solution to this problem, as microorganisms that convert CO and H2) (the essential components of syngas) to multicarbon compounds are available. These are predominantly mesophilic microorganisms that produce short-chain fatty acids and alcohols from CO and H2. Additionally, hydrogen can be produced by carboxydotrophic hydrogenogenic bacteria that convert CO and H2O to H2 and CO2. The production of ethanol through syngas fermentation is already available as a commercial process. The use of thermophilic microorganisms for these processes could offer some advantages; however, to date, few thermophiles are known that grow well on syngas and produce organic compounds. The identification of new isolates that would broaden the product range of syngas fermentations is desirable. Metabolic engineering could be employed to broaden the variety of available products, although genetic tools for such engineering are currently unavailable. Nevertheless, syngas fermenting microorganisms possess advantageous characteristics for biofuel production and hold potential for future engineering efforts.
Collapse
Affiliation(s)
- Anne M Henstra
- Laboratory of Microbiology, Wageningen University, H. v. Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Abstract
The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.
Collapse
Affiliation(s)
- Irene Wagner-Döbler
- National Research Institute for Biotechnology (GBF), Department for Cell Biology, 38124 Braunschweig, Germany.
| | | |
Collapse
|
37
|
Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, González JM, Whitman WB, Wiegel J. Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 2006; 11:145-57. [PMID: 17021657 DOI: 10.1007/s00792-006-0022-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/drug effects
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/metabolism
- Base Composition
- Carbon Monoxide/metabolism
- Chemoautotrophic Growth
- DNA, Bacterial/analysis
- Drug Resistance
- Ferric Compounds/metabolism
- Ferrosoferric Oxide/metabolism
- Geologic Sediments/microbiology
- Gram-Positive Asporogenous Rods/classification
- Gram-Positive Asporogenous Rods/drug effects
- Gram-Positive Asporogenous Rods/genetics
- Gram-Positive Asporogenous Rods/growth & development
- Gram-Positive Asporogenous Rods/isolation & purification
- Gram-Positive Asporogenous Rods/metabolism
- Hydrogen-Ion Concentration
- Lipids/analysis
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Homology, Nucleic Acid
- Temperature
- Water Microbiology
Collapse
Affiliation(s)
- T Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 2006; 11:1-7. [PMID: 16988758 DOI: 10.1007/s00792-006-0004-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 05/23/2006] [Indexed: 11/25/2022]
Abstract
A moderately thermophilic, sporeforming bacterium able to reduce amorphous Fe(III)-hydroxide was isolated from ferric deposits of a terrestrial hydrothermal spring, Kunashir Island (Kurils), and designated as strain Z-0001. Cells of strain Z-0001 were straight, Gram-positive rods, slowly motile. Strain Z-0001 was found to be an obligate anaerobe. It grew in the temperature range from 45 to 70 degrees C with an optimum at 57-60 degrees C, in a pH range from 5.9 to 8.0 with an optimum at 7.0-7.2, and in NaCl concentration range 0-3.5% with an optimum at 0%. Molecular hydrogen, acetate, peptone, yeast and beef extracts, glycogen, glycolate, pyruvate, betaine, choline, N-acetyl-D-glucosamine and casamino acids were used as energy substrates for growth in presence of Fe(III) as an electron acceptor. Sugars did not support growth. Magnetite, Mn(IV) and anthraquinone-2,6-disulfonate served as the alternative electron acceptors, supporting the growth of isolate Z-0001 with acetate as electron donor. Formation of magnetite was observed when amorphous Fe(III) hydroxide was used as electron acceptor. Yeast extract, if added, stimulated growth, but was not required. Isolate Z-0001 was able to grow chemolithoautotrophicaly with molecular hydrogen as the only energy substrate, Fe(III) as electron acceptor and CO(2) as the carbon source. Isolate Z-0001 was able to grow with 100% CO as the sole energy source, producing H(2) and CO(2), requiring the presence of 0.2 g l(-1) of acetate as the carbon source. The G+C content of strain Z-0001(T )DNA G+C was 47.8 mol%. Based on 16S rRNA sequence analyses strain Z-0001 fell into the cluster of family Peptococcaceae, within the low G+C content Gram-Positive bacteria, clustering with Thermincola carboxydophila (98% similarity). DNA-DNA hybridization with T. carboxydophila was 27%. On the basis of physiological and phylogenetic data it is proposed that strain Z-0001(T) (=DSMZ 14005, VKM B-2307) should be placed in the genus Thermincola as a new species Thermincola ferriacetica sp. nov.
Collapse
Affiliation(s)
- Daria G Zavarzina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJM. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol 2006; 26:41-65. [PMID: 16594524 DOI: 10.1080/07388550500513974] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.
Collapse
Affiliation(s)
- Jan Sipma
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA. Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 2006; 56:797-800. [PMID: 16585697 DOI: 10.1099/ijs.0.63961-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel anaerobic, thermophilic, CO-utilizing bacterium, strain KarT, was isolated from a hot spring of Karymskoe Lake, Kamchatka Peninsula. The cells of the novel isolate were Gram-positive, spore-forming, short rods. The bacterium grew chemolithoautotrophically on CO, producing equimolar quantities of H2and CO2(according to the equation CO + H2O → CO2+ H2), and in the absence of CO, under N2in the gas phase, chemoorganoheterotrophically with yeast extract, sucrose or pyruvate. Growth was observed in the temperature range 50–70 °C, with an optimum at 60 °C, and in the pH range 6·2–8·0, with an optimum at pH 6·8. The micro-organism did not grow on solid media; it was able to grow only in semi-solid medium containing 0·5 % agar. The generation time under optimal conditions for chemolithoautotrophic growth was 1 h. The G+C content of the DNA was 46·5±1 mol%. Growth was completely inhibited by penicillin, novobiocin, streptomycin, kanamycin and neomycin. Analysis of the 16S rRNA gene sequence showed that the isolate should be assigned to the genusCarboxydocella. On the basis of the results of DNA–DNA hybridization and morphological and physiological analyses, strain KarTrepresents a novel species of the genusCarboxydocella, for which the nameCarboxydocella sporoproducenssp. nov. is proposed. The type strain is KarT(=DSM 16521T=VKM B-2358T).
Collapse
Affiliation(s)
- Tatiana V Slepova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Anatoly M Lysenko
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Tatyana V Kolganova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| | - Olga V Kamzolkina
- Lomonosov Moscow State University, Biology faculty, Vorob'evy gory, 119899 Moscow, Russia
| | - Genady A Karpov
- Institute of Volcanology and Seismology, Far-East Division Russian Academy of Sciences, Piip Boulevard, 9, 683006 Petropavlovsk-Kamchatsky, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, 117811 Moscow, Russia
| |
Collapse
|