1
|
Ko SR, Le VV, Jin L, Lee SA, Ahn CY, Oh HM. Mariniflexile maritimum sp. nov., isolated from seawater of the South Sea in the Republic of Korea. Int J Syst Evol Microbiol 2021; 71. [PMID: 34323679 DOI: 10.1099/ijsem.0.004925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, rod-shaped, aerobic, non-motile bacterial strain, designated M5A1MT, was isolated from seawater collected from the South Sea of the Republic of Korea. Based on 16S rRNA gene sequence similarity, strain M5A1MT was closely related to Mariniflexile gromovii KMM 6038T (95.3 %), Mariniflexile fucanivorans SW5T (95.2 %), Mariniflexile soesokkakense RSSK-9T (95.1 %), Yeosuana aromativorans GW1-1T (94.6 %) and Confluentibacter lentus HJM-3T (94.6 %). Genome-based phylogenetic analyses revealed that strain M5A1MT formed a distinct cluster with the type strains of the genus Mariniflexile. The major cellular fatty acid constituents (>5 % of the total fatty acids) were iso-C15:0, anteiso-C15 : 0, iso-C15 : 0 3-OH, iso-C15 : 1 G, iso-C16:03-OH and iso-C17 : 0 3-OH. The respiratory quinone was identified as MK-6. The major polar lipids were phosphatidylethanolamine and one unidentified polar lipid. The genomic DNA G+C content of strain M5A1MT was determined to be 37.7 mol%. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain M5A1MT is considered to represent a novel species within the genus Mariniflexile, for which the name Mariniflexile maritimum sp. nov. is proposed. The type strain is M5A1MT (=KCTC 72895T=JCM 33982T).
Collapse
Affiliation(s)
- So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210-037, PR China
| | - Sang-Ah Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Extremophiles in Soil Communities of Former Copper Mining Sites of the East Harz Region (Germany) Reflected by Re-Analyzed 16S rRNA Data. Microorganisms 2021; 9:microorganisms9071422. [PMID: 34209398 PMCID: PMC8305195 DOI: 10.3390/microorganisms9071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The east and southeast rim of Harz mountains (Germany) are marked by a high density of former copper mining places dating back from the late 20th century to the middle age. A set of 18 soil samples from pre- and early industrial mining places and one sample from an industrial mine dump have been selected for investigation by 16S rRNA and compared with six samples from non-mining areas. Although most of the soil samples from the old mines show pH values around 7, RNA profiling reflects many operational taxonomical units (OTUs) belonging to acidophilic genera. For some of these OTUs, similarities were found with their abundances in the comparative samples, while others show significant differences. In addition to pH-dependent bacteria, thermophilic, psychrophilic, and halophilic types were observed. Among these OTUs, several DNA sequences are related to bacteria which are reported to show the ability to metabolize special substrates. Some OTUs absent in comparative samples from limestone substrates, among them Thaumarchaeota were present in the soil group from ancient mines with pH > 7. In contrast, acidophilic types have been found in a sample from a copper slag deposit, e.g., the polymer degrading bacterium Granulicella and Acidicaldus, which is thermophilic, too. Soil samples of the group of pre-industrial mines supplied some less abundant, interesting OTUs as the polymer-degrading Povalibacter and the halophilic Lewinella and Halobacteriovorax. A particularly high number of bacteria (OTUs) which had not been detected in other samples were found at an industrial copper mine dump, among them many halophilic and psychrophilic types. In summary, the results show that soil samples from the ancient copper mining places contain soil bacterial communities that could be a promising source in the search for microorganisms with valuable metabolic capabilities.
Collapse
|
3
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
4
|
Wei Y, Wang K, Pei J, Zhang Y, Fang J. Confluentibacter sediminis sp. nov., isolated from the junction between the ocean and a freshwater lake and emended description of the genus Confluentibacter. Int J Syst Evol Microbiol 2019; 69:3581-3585. [PMID: 31429814 DOI: 10.1099/ijsem.0.003665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel marine Gram-stain-negative, non-motile, aerobic and rod-shaped bacterium, designated strain DSL-48T, was isolated from tidal flat sediment sampled from the East China Sea and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 35 °C (range, 4-37 °C), pH 6 (pH 5-10) and with 4 % (w/v) NaCl (0-7 %). The nearest phylogenetic neighbour was Confluentibacter citreus KCTC 52638T with 16S rRNA gene similarity of 97.1 %. The predominant respiratory quinone was menaquinone-6 (MK-6). The major polar lipids were phosphatidylethanolamine, three unidentified aminolipids and four unidentified lipids. The major fatty acids of strain DSL-48T were iso-C15 : 0, iso-C17 : 0 3-OH, anteiso-C15 : 0, iso-C15 : 0 3-OH and iso-C16 : 0 3-OH. The G+C content of the genomic DNA was 33.3 mol%. The combined genotypic and phenotypic data indicated that strain DSL-48T represents a novel species of the genus Confluentibacter, for which the name Confluentibacter sediminis sp. nov. is proposed, with the type strain DSL-48T (=KCTC 62648T=MCCC 1K03537T).
Collapse
Affiliation(s)
- Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Ke Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiahao Pei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yan Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jiasong Fang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Li Y, Hou XJ, Shen X, Han SB, Ju Z, Zhao Z, Yu XY, Wu M, Sun C. Confluentibacter flavum sp. nov., Isolated from the Saline Lake. Curr Microbiol 2018; 75:1447-1452. [PMID: 30128842 DOI: 10.1007/s00284-018-1542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 07/17/2018] [Indexed: 11/29/2022]
Abstract
A Gram-stain-negative, rod-shaped, non-motile, bacterial isolate designated 3BT, was isolated from a saline lake, and subjected to a polyphasic taxonomic investigation. The phylogenetic analysis based on 16S rRNA gene sequence clearly showed an allocation to the genus Confluentibacter with similarity ranging from 95.1 to 98%. OrthoANI values between strain 3BT and related strains of Confluentibacter (< 90%) were lower than the threshold value of 95% ANI relatedness recommended for species demarcation. Strain 3BT grew at 4-35 °C and pH 6.0-8.0 (optimum, 28 °C and pH 6.5) and with 0-3% (w/v) NaCl (optimum, 0.5%). The predominant respiratory quinone was menaquinone-6 (MK-6) and the major fatty acids were iso-C15:0, iso-C15:1 G, iso-C15:0 3-OH, and iso-C17:0 3-OH. The polar lipid profile of strain 3BT comprised phosphatidylethanolamine, one unidentified aminolipid, one aminophospholipid, and three unidentified lipids (L1-3). The DNA G+C content was 33.1 mol%. On the basis of morphological, physiological, and chemotaxonomic characteristics, together with the results of phylogenetic analysis, strain 3BT is described as a novel species in genus Confluentibacter, for which the name Confluentibacter flavum sp. nov. (type strain 3BT = CGMCC115960T = KCTC52969T) is proposed.
Collapse
Affiliation(s)
- Yu Li
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xin-Jun Hou
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xia Shen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shuai-Bo Han
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhao Ju
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhe Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiao-Yun Yu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Cong Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
6
|
Han JR, Zhang H, Zheng WS, Chen GJ, Du ZJ. Confluentibacter citreus sp. nov., isolated from lake sediment, and emended description of the genus Confluentibacter. Int J Syst Evol Microbiol 2017; 67:4008-4012. [DOI: 10.1099/ijsem.0.002239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ji-Ru Han
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Hui Zhang
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Wei-Shuang Zheng
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Guan-Jun Chen
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- Joint Research Laboratory for Microbial Oceanography, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, PR China
- College of Marine Science, Shandong University, Weihai 264209, PR China
| |
Collapse
|