1
|
Zhang R, Xu L, Tian D, Du L, Yang F. Coal mining activities driving the changes in bacterial community. Sci Rep 2024; 14:25615. [PMID: 39463387 DOI: 10.1038/s41598-024-75590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
The mechanism of the difference in bacterial community composition caused by environmental factors in the underground coal mine is unclear. In order to reveal the influence of coal mining activities on the characteristics of bacterial community structure in coal seam, 16S rRNA gene amplicon sequencing technology was used to determine the species abundance, biodiversity, and gene abundance of bacterial community in a coal mine in Shanxi Province, and the environmental factors such as metal elements, non-metal elements, pH value, and gas concentration of coal samples were determined. The results showed that environmental factors and bacterial communities had obvious regional characteristics. Mining activities greatly affected the α diversity of bacterial communities, mining working face > main airway > roadway roof > unexposed coal seam > tunneling roadway. The bacterial community composition of each sample point is also very different. The main airway, roadway roof, and unexposed coal seam are dominated by Actinobacteria while the mining working face and tunneling roadway are dominated by Proteobacteria. Among the gene abundances of metabolic pathways in each site, Citrate cycle had the greatest difference, followed by glycine, serine and threonine metabolism, and oxidative phosphorylation and methane metabolism had little difference. RDA analysis showed that the environmental factors affecting the bacterial community were mainly cadmium, oxygen, hydrogen, and gas content. CCA analysis divided the bacterial community into three categories. Degradation functional bacteria are located in mining working face, bacteria that tolerate poor environments are located in main airway and tunneling roadway, and human pathogens are mostly located in roadway roof and unexposed coal seam. The research results would provide support for realizing green and safe mining in coal mines.
Collapse
Affiliation(s)
- Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lianman Xu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Da Tian
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Linlin Du
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
2
|
Patil SK, Islam T, Tveit A, Hodson A, Øvreås L. Targeting methanotrophs and isolation of a novel psychrophilic Methylobacter species from a terrestrial Arctic alkaline methane seep in Lagoon Pingo, Central Spitsbergen (78° N). Antonie Van Leeuwenhoek 2024; 117:60. [PMID: 38517574 PMCID: PMC10959801 DOI: 10.1007/s10482-024-01953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).
Collapse
Affiliation(s)
- Shalaka K Patil
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway.
| | - Tajul Islam
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
| | - Alexander Tveit
- Department of Arctic and Marine Biology, The Arctic University of Tromsø, 9037, Tromsø, Norway
| | - Andrew Hodson
- University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
- University Centre in Svalbard, 9171, Longyearbyen, Norway
- Bjerknes Centre for Climate Research, Jahnebakken 5, 5007, Bergen, Norway
| |
Collapse
|
3
|
Liu C, Schmitz RA, Pol A, Hogendoorn C, Verhagen D, Peeters SH, van Alen TA, Cremers G, Mesman RA, Op den Camp HJM. Active coexistence of the novel gammaproteobacterial methanotroph 'Ca. Methylocalor cossyra' CH1 and verrucomicrobial methanotrophs in acidic, hot geothermal soil. Environ Microbiol 2024; 26:e16602. [PMID: 38454738 DOI: 10.1111/1462-2920.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Schmitz
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arjan Pol
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Daniël Verhagen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Theo A van Alen
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Geert Cremers
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Rob A Mesman
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
5
|
Nguyen NA, Cong Y, Hurrell RC, Arias N, Garg N, Puri AW, Schmidt EW, Agarwal V. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem Biol 2022; 17:1577-1585. [PMID: 35666841 PMCID: PMC9746716 DOI: 10.1021/acschembio.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product-encoding biosynthetic gene clusters (BGCs) within microbial genomes far outnumber the known natural products; chemical products from such BGCs remain cryptic. These silent BGCs hold promise not only for the elaboration of new natural products but also for the discovery of useful biosynthetic enzymes. Here, we describe a genome mining strategy targeted toward the discovery of substrate promiscuous natural product biosynthetic enzymes. In the genome of the methanotrophic bacterium Methylovulum psychrotolerans Sph1T, we discover a transcriptionally silent natural product BGC that encoded numerous ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These cryptic RiPP natural products were accessed using heterologous expression of the substrate peptide and biosynthetic enzyme-encoded genes. In line with our genome mining strategy, the RiPP biosynthetic enzymes in this BGC were found to be substrate promiscuous, which allowed us to use them in a combinatorial fashion with a similarly substrate-tolerant cyanobactin biosynthetic enzyme to introduce head-to-tail macrocyclization in the proteusin family of RiPP natural products.
Collapse
Affiliation(s)
- Nguyet A. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Rachel C. Hurrell
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Natalie Arias
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332,School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA 30332,correspondence:
| |
Collapse
|
6
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Seasonal dynamics of methanotrophic bacteria in a boreal oil sands end-pit lake. Appl Environ Microbiol 2021; 88:e0145521. [PMID: 34818104 DOI: 10.1128/aem.01455-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Base Mine Lake (BML) is the first full-scale demonstration end pit lake for the oil sands mining industry in Canada. We examined aerobic methanotrophic bacteria over all seasons for five years in this dimictic lake. Methanotrophs comprised up to 58% of all bacterial reads in 16S rRNA gene amplicon sequencing analyses (median 2.8%), and up to 2.7 × 104 cells mL-1 of water (median 0.5 × 103) based on qPCR of pmoA genes. Methanotrophic activity and populations in the lake water were highest during fall turnover, and remained high through the winter ice-covered period into spring turnover. They declined during summer stratification, especially in the epilimnion. Three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus) cycled seasonally, based on both relative and absolute abundance measurements. Methylobacter and Methylovulum populations peaked in winter/spring, when methane oxidation activity was psychrophilic. Methyloparacoccus populations increased in the water column through summer and fall, when methane oxidation was mesophilic, and also predominated in the underlying tailings sediment. Other, less abundant genera grew primarily during summer, possibly due to distinct CH4/O2 microniches created during thermal stratification. These data are consistent with temporal and spatial niche differentiation based on temperature, CH4 and O2. This pit lake displays methane cycling and methanotroph population dynamics similar to natural boreal lakes. Importance statement: The study examined methanotrophic bacteria in an industrial end pit lake, combining molecular DNA methods (both quantitative and descriptive) with biogeochemical measurements. The lake was sampled over 5 years, in all four seasons, as often as weekly, and included sub-ice samples. The resulting multi-season and multi-year dataset is unique in its size and intensity, and allowed us to document clear and consistent seasonal patterns of growth and decline of three methanotroph genera (Methylobacter, Methylovulum, and Methyloparacoccus). Laboratory experiments suggested that one major control of this succession was niche partitioning based on temperature. The study helps to understand microbial dynamics in engineered end-pit lakes, but we propose that the dynamics are typical of boreal stratified lakes, and widely applicable in microbial ecology and limnology. Methane oxidising bacteria are important model organisms in microbial ecology, and have implications for global climate change.
Collapse
|
8
|
Bussmann I, Horn F, Hoppert M, Klings KW, Saborowski A, Warnstedt J, Liebner S. Methylomonas albis sp. nov. and Methylomonas fluvii sp. nov.: Two cold-adapted methanotrophs from the river Elbe and emended description of the species Methylovulum psychrotolerans. Syst Appl Microbiol 2021; 44:126248. [PMID: 34624710 DOI: 10.1016/j.syapm.2021.126248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Three strains of methanotrophic bacteria (EbAT, EbBT and Eb1) were isolated from the River Elbe, Germany. These Gram-negative, rod-shaped or coccoid cells contain intracytoplasmic membranes perpendicular to the cell surface. Colonies and liquid cultures appeared bright-pink. The major cellular fatty acids were 12:0 and 14:0, in addition in Eb1 the FA 16:1ω5t was also dominant. Methane and methanol were utilized as sole carbon sources by EbBT and Eb1, while EbAT could not use methanol. All strains oxidize methane using the particulate methane monooxygenase. Both strains contain an additional soluble methane monooxygenase. The strains grew optimally at 15-25 °C and at pH 6 and 8. Based on 16S rRNA gene analysis recovered from the full genome, the phylogenetic position of EbAT is robustly outside any species clade with its closest relatives being Methylomonas sp. MK1 (98.24%) and Methylomonas sp. 11b (98.11%). Its closest type strain is Methylomonas methanica NCIMB11130 (97.91%). The 16S rRNA genes of EbBT are highly similar to Methylomonas methanica strains with Methylomonas methanica R-45371 as the closest relative (99.87% sequence identity). However, average nucleotide identity (ANI) and digital DNA-DNA-hybridization (dDDH) values reveal it as distinct species. The DNA G + C contents were 51.07 mol% and 51.5 mol% for EbAT and EbBT, and 50.7 mol% for Eb1, respectively. Strains EbAT and EbBT are representing two novel species within the genus Methylomonas. For strain EbAT we propose the name Methylomonas albis sp. nov (LMG 29958, JCM 32282) and for EbBT, we propose the name Methylomonas fluvii sp. nov (LMG 29959, JCM 32283). Eco-physiological descriptions for both strains are provided. Strain Eb1 (LMG 30323, JCM 32281) is a member of the species Methylovulum psychrotolerans. This genus is so far only represented by two isolates but Eb1 is the first isolate from a temperate environment; so, an emended description of the species is given.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Michael Hoppert
- University of Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Karl-Walter Klings
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Anke Saborowski
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Julia Warnstedt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| |
Collapse
|
9
|
Danilova OV, Ivanova AA, Terent’eva IE, Glagolev MV, Sabrekov AF. Microbial Community Composition of Floodplains Shallow-Water Seeps in the Bolshaya Rechka Floodplain, Western Siberia. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Dong Y, Sanford RA, Connor L, Chee-Sanford J, Wimmer BT, Iranmanesh A, Shi L, Krapac IG, Locke RA, Shao H. Differential structure and functional gene response to geochemistry associated with the suspended and attached shallow aquifer microbiomes from the Illinois Basin, IL. WATER RESEARCH 2021; 202:117431. [PMID: 34320445 DOI: 10.1016/j.watres.2021.117431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Despite the clear ecological significance of the microbiomes inhabiting groundwater and connected ecosystems, our current understanding of their habitats, functionality, and the ecological processes controlling their assembly have been limited. In this study, an efficient pipeline combining geochemistry, high-throughput FluidigmTM functional gene amplification and sequencing was developed to analyze the suspended and attached microbial communities inhabiting five groundwater monitoring wells in the Illinois Basin, USA. The dominant taxa in the suspended and the attached microbial communities exhibited significantly different spatial and temporal changes in both alpha- and beta-diversity. Further analyses of representative functional genes affiliated with N2 fixation (nifH), methane oxidation (pmoA), and sulfate reduction (dsrB, and aprA), suggested functional redundancy within the shallow aquifer microbiomes. While more diversified functional gene taxa were observed for the suspended microbial communities than the attached ones except for pmoA, different levels of changes over time and space were observed between these functional genes. Notably, deterministic and stochastic ecological processes shaped the assembly of microbial communities and functional gene reservoirs differently. While homogenous selection was the prevailing process controlling assembly of microbial communities, the neutral processes (e.g., dispersal limitation, drift and others) were more important for the functional genes. The results suggest complex and changing shallow aquifer microbiomes, whose functionality and assembly vary even between the spatially proximate habitats and fractions. This research underscored the importance to include all the interface components for a more holistic understanding of the biogeochemical processes in aquifer ecosystems, which is also instructive for practical applications.
Collapse
Affiliation(s)
- Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, USA
| | | | | | | | | | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | | | | | | |
Collapse
|
11
|
Yun J, Crombie AT, Ul Haque MF, Cai Y, Zheng X, Wang J, Jia Z, Murrell JC, Wang Y, Du W. Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environ Microbiol 2021; 23:6520-6535. [PMID: 34390603 DOI: 10.1111/1462-2920.15697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
12
|
Piñar G, Sclocchi MC, Pinzari F, Colaizzi P, Graf A, Sebastiani ML, Sterflinger K. The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History. Front Microbiol 2020; 11:593401. [PMID: 33329475 PMCID: PMC7718017 DOI: 10.3389/fmicb.2020.593401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022] Open
Abstract
Seven emblematic Leonardo da Vinci’s drawings were investigated through third generation sequencing technology (Nanopore). In addition, SEM analyses were carried out to acquire photographic documentation and to infer the nature of the micro-objects removed from the surface of the drawings. The Nanopore generated microbiomes can be used as a “bio-archive” of the drawings, offering a kind of fingerprint for current and future biological comparisons. This information might help to create a biological catalog of the drawings (cataloging), a microbiome-fingerprint for each single analyzed drawing, as a reference dataset for future studies (monitoring) and last but not least a bio-archive of the history of each single object (added value). Results showed a relatively high contamination with human DNA and a surprising dominance of bacteria over fungi. However, it was possible to identify typical bacteria of the human microbiome, which are mere contaminants introduced by handling of the drawings as well as other microorganisms that seem to have been introduced through vectors, such as insects and their droppings, visible through the SEM analyses. All drawings showed very specific bio-archives, but a core microbiome of bacteria and fungi that are repeatedly found in this type of material as true degraders were identified, such as members of the phyla Proteobacteria, Actinobacteria, and Firmicutes among bacteria, and fungi belonging to the classes Sordariomycetes and Eurotiomycetes. In addition, some similarities were observed that could be influenced by their geographical location (Rome or Turin), indicating the influence of this factor and denoting the importance of environmental and storage conditions on the specific microbiomes.
Collapse
Affiliation(s)
- Guadalupe Piñar
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maria Carla Sclocchi
- Laboratorio di Biologia, Istituto Centrale per la Patologia degli Archivi e del Libro (ICPAL), Rome, Italy
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo, Italy
| | - Piero Colaizzi
- Laboratorio di Biologia, Istituto Centrale per la Patologia degli Archivi e del Libro (ICPAL), Rome, Italy
| | - Alexandra Graf
- Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus, Vienna, Austria
| | - Maria Letizia Sebastiani
- Laboratorio di Biologia, Istituto Centrale per la Patologia degli Archivi e del Libro (ICPAL), Rome, Italy
| | - Katja Sterflinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
13
|
Saidi-Mehrabad A, Kits DK, Kim JJ, Tamas I, Schumann P, Khadka R, Strilets T, Smirnova AV, Rijpstra WIC, Sinninghe Damsté JS, Dunfield PF. Methylicorpusculum oleiharenae gen. nov., sp. nov., an aerobic methanotroph isolated from an oil sands tailings pond. Int J Syst Evol Microbiol 2020; 70:2499-2508. [DOI: 10.1099/ijsem.0.004064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0–3.3 µm in length and 1.0–1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and
Methylomicrobium
were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class
Gammaproteobacteria
and family
Methylococcaceae
, most closely related to members of the genera
Methylomicrobium
and
Methylobacter
(95.0–97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA–DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.
Collapse
Affiliation(s)
- Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Dimitri K. Kits
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ivica Tamas
- Departman Za Biologiju I Ekologiju, Prirodno-Matematicki Fakultet, Univerzitet u Novom Sadu, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Peter Schumann
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures. Inhoffenstr. 7 B 38124 Braunschweig, Germany
| | - Roshan Khadka
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Tania Strilets
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Angela V. Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Jaap S. Sinninghe Damsté
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
14
|
Islam T, Larsen Ø, Birkeland NK. A Novel Cold-adapted Methylovulum species, with a High C16:1ω5c Content, Isolated from an Arctic Thermal Spring in Spitsbergen. Microbes Environ 2020; 35:ME20044. [PMID: 32536671 PMCID: PMC7511782 DOI: 10.1264/jsme2.me20044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 11/12/2022] Open
Abstract
A novel cold-adapted methane-oxidizing bacterium, termed TFB, was isolated from the thermoglacial Arctic karst spring, Trollosen, located in the South Spitsbergen National Park (Norway). The source water is cold and extremely low in phosphate and nitrate. The isolate belongs to the Methylovulum genus of gammaproteobacterial methanotrophs, with the closest phylogenetic affiliation with Methylovulum miyakonense and Methylovulum psychrotolerans (96.2 and 96.1% 16S rRNA gene sequence similarities, respectively). TFB is a strict aerobe that only grows in the presence of methane or methanol. It fixes atmospheric nitrogen and contains Type I intracellular membranes. The growth temperature range was 2-22°C, with an optimum at 13-18°C. The functional genes pmoA, mxaF, and nifH were identified by PCR, whereas mmoX and cbbL were not. C16:1ω5c was identified as the major fatty acid constituent, at an amount (>49%) not previously found in any methanotrophs, and is likely to play a major role in cold adaptation. Strain TFB may be regarded as a new psychrotolerant or psychrophilic species within the genus Methylovulum. The recovery of this cold-adapted bacterium from a neutral Arctic thermal spring increases our knowledge of the diversity and adaptation of extremophilic gammaproteobacterial methanotrophs in the candidate family "Methylomonadaceae".
Collapse
Affiliation(s)
- Tajul Islam
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bergen Katedralskole, Kong Oscars gate 36, 5017 Bergen, Norway
| | - Øivind Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | | |
Collapse
|
15
|
Bale NJ, Rijpstra WIC, Sahonero-Canavesi DX, Oshkin IY, Belova SE, Dedysh SN, Sinninghe Damsté JS. Fatty Acid and Hopanoid Adaption to Cold in the Methanotroph Methylovulum psychrotolerans. Front Microbiol 2019; 10:589. [PMID: 31024466 PMCID: PMC6460317 DOI: 10.3389/fmicb.2019.00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Three strains of aerobic psychrotolerant methanotrophic bacteria Methylovulum psychrotolerans, isolated from geographically remote low-temperature environments in Northern Russia, were grown at three different growth temperatures, 20, 10 and 4°C and were found to be capable of oxidizing methane at all temperatures. The three M. psychrotolerans strains adapted their membranes to decreasing growth temperature by increasing the percent of unsaturated fatty acid (FAs), both for the bulk and intact polar lipid (IPL)-bound FAs. Furthermore, the ratio of βOH-C16:0 to n-C16:0 increased as growth temperature decreased. The IPL head group composition did not change as an adaption to temperature. The most notable hopanoid temperature adaptation of M. psychrotolerans was an increase in unsaturated hopanols with decreasing temperature. As the growth temperature decreased from 20 to 4°C, the percent of unsaturated M. psychrotolerans bulk-FAs increased from 79 to 89 % while the total percent of unsaturated hopanoids increased from 27 to 49 %. While increased FA unsaturation in response to decreased temperature is a commonly observed response in order to maintain the liquid-crystalline character of bacterial membranes, hopanoid unsaturation upon cold exposition has not previously been described. In order to investigate the mechanisms of both FA and hopanoid cold-adaption in M. psychrotolerans we identified genes in the genome of M. psychrotolerans that potentially code for FA and hopanoid desaturases. The unsaturation of hopanoids represents a novel membrane adaption to maintain homeostasis upon cold adaptation.
Collapse
Affiliation(s)
- Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands
| | - Igor Y Oshkin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, and Utrecht University, Texel, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic Analysis of the Gammaproteobacterial Methanotrophs (Order Methylococcales) Calls for the Reclassification of Members at the Genus and Species Levels. Front Microbiol 2018; 9:3162. [PMID: 30631317 PMCID: PMC6315193 DOI: 10.3389/fmicb.2018.03162] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
The order Methylococcales constitutes the methanotrophs – bacteria that can metabolize methane, a potent greenhouse gas, as their sole source of energy. These bacteria are significant players in the global carbon cycle and can produce value-added products from methane, such as biopolymers, biofuels, and single-cell proteins for animal feed, among others. Previous studies using single-gene phylogenies have shown inconsistencies in the currently established taxonomic structure of this group. This study aimed to determine and resolve these issues by using whole-genome sequence analyses. Phylogenomic analysis and the use of similarity indexes for genomic comparisons – average amino acid identity, digital DNA–DNA hybridization (dDDH), and average nucleotide identity (ANI) – were performed on 91 Methylococcales genomes. Results suggest the reclassification of members at the genus and species levels. Firstly, to resolve polyphyly of the genus Methylomicrobium, Methylomicrobium alcaliphilum, “Methylomicrobium buryatense,” Methylomicrobium japanense, Methylomicrobium kenyense, and Methylomicrobium pelagicum are reclassified to a newly proposed genus, Methylotuvimicrobium gen. nov.; they are therefore renamed to Methylotuvimicrobium alcaliphilum comb. nov., “Methylotuvimicrobium buryatense” comb. nov., Methylotuvimicrobium japanense comb. nov., Methylotuvimicrobium kenyense comb. nov., and Methylotuvimicrobium pelagicum comb. nov., respectively. Secondly, due to the phylogenetic affinity and phenotypic similarities of Methylosarcina lacus with Methylomicrobium agile and Methylomicrobium album, the reclassification of the former species to Methylomicrobium lacus comb. nov. is proposed. Thirdly, using established same-species delineation thresholds (70% dDDH and 95% ANI), Methylobacter whittenburyi is proposed to be a later heterotypic synonym of Methylobacter marinus (89% dDDH and 99% ANI). Also, the effectively but not validly published “Methylomonas denitrificans” was identified as Methylomonas methanica (92% dDDH and 100% ANI), indicating that the former is a later heterotypic synonym of the latter. Lastly, strains MC09, R-45363, and R-45371, currently identified as M. methanica, each represent a putative novel species of the genus Methylomonas (21–35% dDDH and 74–88% ANI against M. methanica) and were reclassified as Methylomonas sp. strains. It is imperative to resolve taxonomic inconsistencies within this group, first and foremost, to avoid confusion with ecological and evolutionary interpretations in subsequent studies.
Collapse
Affiliation(s)
- Fabini D Orata
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jan P Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK. Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils. Front Microbiol 2018; 9:1982. [PMID: 30210468 PMCID: PMC6119699 DOI: 10.3389/fmicb.2018.01982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems, sodium/proton antiporters, and two copies of proton-translocating F1F0-type ATP synthase genes were identified, which might participate in the key pH homeostasis mechanisms in KS32. In addition, the V-type ATP synthase and urea assimilation genes might be used for pH homeostasis in KS41. Genes involved in the modification of membranes by incorporation of cyclopropane fatty acids and hopanoid lipids might be used for reducing proton influx into cells. The two methanotroph genomes possess genes for elaborate heavy metal efflux pumping systems, possibly owing to increased heavy metal toxicity in acidic conditions. Phylogenies of key genes involved in acid adaptation, methane oxidation, and antiviral defense in KS41 were incongruent with that of 16S rRNA. Thus, the detailed analysis of the genome sequences provides new insights into the ecology of methanotrophs responding to soil acidification.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Woon-Jong Yu
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju City, South Korea
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Man-Young Jung
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
18
|
Description of ‘Candidatus Methylocucumis oryzae’, a novel Type I methanotroph with large cells and pale pink colour, isolated from an Indian rice field. Antonie van Leeuwenhoek 2018; 111:2473-2484. [DOI: 10.1007/s10482-018-1136-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
|
19
|
Mateos-Rivera A, Islam T, Marshall IPG, Schreiber L, Øvreås L. High-quality draft genome of the methanotroph Methylovulum psychrotolerans Str. HV10-M2 isolated from plant material at a high-altitude environment. Stand Genomic Sci 2018; 13:10. [PMID: 29686747 PMCID: PMC5898042 DOI: 10.1186/s40793-018-0314-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
Here we present the genome of Methylovulum psychrotolerans strain HV10-M2, a methanotroph isolated from Hardangervidda national park (Norway). This strain represents the second of the two validly published species genus with a sequenced genome. The other is M. miyakonense HT12, which is the type strain of the species and the type species of the genus Methylovulum. We present the genome of M. psychrotolerants str. HV10-M2 and discuss the differences between M. psychrotolerans and M. miyakonense. The genome size of M. psychrotolerans str. HV10-M2 is 4,923,400 bp and contains 4415 protein-coding genes, 50 RNA genes and an average GC content of 50.88%.
Collapse
Affiliation(s)
- Alejandro Mateos-Rivera
- 1Department of Biology, University of Bergen, Bergen, Norway.,2Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Tajul Islam
- 1Department of Biology, University of Bergen, Bergen, Norway
| | - Ian P G Marshall
- 3Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- 3Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,5Present address: Energy, Mining and Environment, National Research Council, Montreal, QC Canada
| | - Lise Øvreås
- 1Department of Biology, University of Bergen, Bergen, Norway.,4UNIS, the University Centre in Svalbard, Longyearbyen, Norway
| |
Collapse
|
20
|
Draft Genome Sequence of Methylovulum psychrotolerans Sph1 T, an Obligate Methanotroph from Low-Temperature Environments. GENOME ANNOUNCEMENTS 2018; 6:6/11/e01488-17. [PMID: 29545306 PMCID: PMC5854766 DOI: 10.1128/genomea.01488-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylovulum psychrotolerans Sph1T is an aerobic, obligate methanotroph, which was isolated from cold methane seeps in West Siberia. This bacterium possesses only a particulate methane monooxygenase and is widely distributed in low-temperature environments. Strain Sph1T has the genomic potential for biosynthesis of hopanoids required for the maintenance of intracytoplasmic membranes.
Collapse
|
21
|
Danilova OV, Belova SE, Gagarinova IV, Dedysh SN. Microbial community composition and methanotroph diversity of a subarctic wetland in Russia. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|