1
|
Cassarini M, Rémond C, Mühle E, Clermont D, Besaury L. Streptomyces durocortorensis sp. nov., isolated from oak rhizosphere. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain RHZ10T was isolated from an oak rhizosphere sampled in Reims, France, and characterized to assess its taxonomy. Based on 16S rRNA gene sequence similarity, strain RHZ10T was affiliated to the genus
Streptomyces
and the closest species were
Streptomyces anulatus
NRRL B-2000T and
Streptomyces pratensis
ch24T. Average nucleotide identity and digital DNA–DNA hybridization values were 77.3–92.4 % and 23.0–50.9 %, respectively, when compared to the type strains of fully sequenced related species having a 16S rRNA gene sequence similarity over 98 %. These data suggested that strain RHZ10T represented a novel species within the genus
Streptomyces
. The genome of RHZ10T was 8.0 Mbp long, had 7 894 predicted coding genes, and a G+C content of 71.7 mol%. Cultures of RHZ10T on ISP 2 medium mostly led to the production a green pigmentation of the core of its colonies in the vegetative mycelium, surrounded by white pigmentation of the aerial mycelium. The main fatty acids of RHZ10T were anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and C16 : 0. Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, unidentified lipids, unidentified phospholipids, unidentified aminolipids and unidentified glycolipids. Its main quinones were MK-9(H6) (69.3 %), MK-9(H4) (17.3 %) and MK-9(H8) (17.0%). Phylogenetic, physiological and chemotaxonomic studies clearly supported that strain RHZ10T represents a novel species within the genus
Streptomyces
, for which the name Streptomyces durocortorensis sp. nov. is proposed and the type strain is RHZ10T (=DSM 112634T=LMG 32187T=CIP 111907T).
Collapse
Affiliation(s)
- Mathieu Cassarini
- INRAE, FARE, UMR A 614, chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France
| | - Caroline Rémond
- INRAE, FARE, UMR A 614, chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France
| | - Estelle Mühle
- Université Paris Cité, Collection de l'Institut Pasteur-CIP, Institut Pasteur, F-75015 Paris, France
| | - Dominique Clermont
- Université Paris Cité, Collection de l'Institut Pasteur-CIP, Institut Pasteur, F-75015 Paris, France
| | - Ludovic Besaury
- INRAE, FARE, UMR A 614, chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France
| |
Collapse
|
2
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
3
|
Buraimoh OM, Ogunyemi AK, Isanbor C, Aina OS, Amund OO, Ilori MO, Familoni OB. Sustainable generation of bioethanol from sugarcane wastes by Streptomyces coelicolor strain COB KF977550 isolated from a tropical estuary. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Ho LK, Daniel-Ivad M, Jeedigunta SP, Li J, Iliadi KG, Boulianne GL, Hurd TR, Smibert CA, Nodwell JR. Chemical entrapment and killing of insects by bacteria. Nat Commun 2020; 11:4608. [PMID: 32929085 PMCID: PMC7490686 DOI: 10.1038/s41467-020-18462-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Martin Daniel-Ivad
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Konstantin G Iliadi
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
5
|
Streptomyces urticae sp. nov., isolated from rhizosphere soil of Urtica urens L. Antonie van Leeuwenhoek 2018; 111:1835-1843. [DOI: 10.1007/s10482-018-1072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
6
|
Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie van Leeuwenhoek 2016; 110:77-86. [PMID: 27730318 DOI: 10.1007/s10482-016-0778-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|