1
|
Madhaiyan M, Selvakumar G, Alex TH, Cai L, Ji L. Plant Growth Promoting Abilities of Novel Burkholderia-Related Genera and Their Interactions With Some Economically Important Tree Species. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.
Collapse
|
2
|
Rojas-Rojas FU, Salazar-Gómez A, Vargas-Díaz ME, Vásquez-Murrieta MS, Hirsch AM, De Mot R, Ghequire MGK, Ibarra JA, Estrada-de los Santos P. Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology (Reading) 2018; 164:1072-1086. [DOI: 10.1099/mic.0.000675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Anuar Salazar-Gómez
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - María Elena Vargas-Díaz
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - María Soledad Vásquez-Murrieta
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Ann M. Hirsch
- 2Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- 3Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - René De Mot
- 4Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
| | - Maarten G. K. Ghequire
- 4Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
| | - J. Antonio Ibarra
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| | - Paulina Estrada-de los Santos
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, Del. Miguel Hidalgo. México, Cd. de, México
| |
Collapse
|
3
|
Dobritsa AP, Kutumbaka KK, Samadpour M. Reclassification of Eubacterium combesii and discrepancies in the nomenclature of botulinum neurotoxin-producing clostridia: Challenging Opinion 69. Request for an Opinion. Int J Syst Evol Microbiol 2018; 68:3068-3075. [PMID: 30058996 DOI: 10.1099/ijsem.0.002942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the taxonomic position of Eubacterium combesii, the whole genome of its type strain, DSM 20696T, was sequenced. Comparison of this sequence with known sequences of other bacteria confirmed that E. combesii represented a member of the Clostridium sporogenes/Clostridium botulinum Group I clade. However, the results of phylogenetic analysis also demonstrated that the latter two species did not form the same genetic entity and that E. combesii was in the C. botulinum Group I subclade. Meanwhile, we showed that E. combesii DSM 20696T did not produce botulinum neurotoxins (BoNTs) and thus should be identified as a strain of C. sporogenes in accordance with the current nomenclature of BoNT-producing clostridia, which is based, in particular, on Opinion 69 issued by the Judicial Commission of the ICSB. However, review of the corresponding Request for an Opinion revealed that it had been based on an erroneous statement. Therefore, we request reconsideration of Opinion 69 and propose to reclassify Eubacterium combesii as a later synonym of Clostridium botulinum. The results of phylogenetic analysis of the other five groups of BoNT-producing clostridia indicated that all the groups were far distant from each other. However, the members of Groups IV-VI are classified as strains of different species, while all members of Groups I-III are designated C. botulinum. Meanwhile, similarly to Group I, Groups II and III are also polyphyletic and appear to consist of two and four species, respectively. These results demonstrate, once again, discrepancies in the nomenclature of BoNT-producing bacteria and corroborate our request for reconsideration of Opinion 69.
Collapse
Affiliation(s)
- Anatoly P Dobritsa
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Kirthi K Kutumbaka
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
4
|
Dobritsa AP, Linardopoulou EV, Samadpour M. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int J Syst Evol Microbiol 2017; 67:3846-3853. [DOI: 10.1099/ijsem.0.002202] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anatoly P. Dobritsa
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Elena V. Linardopoulou
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
5
|
Dobritsa AP, Kutumbaka KK, Werner K, Wiedmann M, Asmus A, Samadpour M. Clostridium tepidum sp. nov., a close relative of Clostridium sporogenes and Clostridium botulinum Group I. Int J Syst Evol Microbiol 2017; 67:2317-2322. [PMID: 28693684 DOI: 10.1099/ijsem.0.001948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obligately anaerobic, Gram-stain-positive, spore-forming bacteria indistinguishable by pulsed-field gel electrophoresis were isolated from non-dairy protein shakes in bloated bottles. One of the isolates, strain IEH 97212T, was selected for further study. The strain was closely related to Clostridium sporogenes and Clostridium botulinum Group 1 based on 16S rRNA gene sequence similarities. Phylogenetic analysis also showed that strain IEH 97212T and strain PE (=DSM 18688), a bacterium isolated from solfataric mud, had identical 16S rRNA gene sequences. Strains IEH 97 212T and DSM 18 688 were relatively more thermophilic (temperature range for growth: 30-55 °C) and less halotolerant [growth range: 0-2.5 % (w/v) NaCl] than C. sporogenes and C. botulinum. They were negative for catalase, oxidase, urease and l-pyrrolidonyl-arylamidase and did not produce indole. The strains produced acid from d-glucose, maltose and trehalose, and hydrolysed gelatin, but did not hydrolyse aesculin. The end-products of growth included acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, isocaproic acid, phenylpropionic acid, 2-piperidinone, 2-pyrrolidinone and gas(es). The predominant fatty acids were C14 : 0, C16 : 0 and C18 : 1ω9c. The genomic DNA G+C content of strains IEH 97212T and DSM 18688 was 26.9 and 26.7 mol%, respectively. According to the digital DNA-DNA hybridization data, the relatedness of these strains was 98.4 %, while they showed only 35.7-36.0 % relatedness to C. sporogenes. Based on the results of this polyphasic study, these strains represent a novel species, for which the name Clostridium tepidum sp. nov. is proposed, with the type strain IEH 97212T (=NRRL B-65463T=DSM 104389T).
Collapse
Affiliation(s)
- Anatoly P Dobritsa
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Kirthi K Kutumbaka
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Kirsten Werner
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, 413 Stocking Hall, NY 14853, USA
| | - Aaron Asmus
- Department of Research and Development, Hormel Foods Corporation, 2 Hormel Place, Austin, MN 55912, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc., 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|