1
|
Lee SD, Yang HL, Kim IS. Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium. Front Microbiol 2023; 14:1299950. [PMID: 38164402 PMCID: PMC10757982 DOI: 10.3389/fmicb.2023.1299950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The taxonomic relationships of 10 strains isolated from seaweeds collected from two beaches in Republic of Korea were studied by sequencing and analyses of 16S rRNA genes and whole genomes. For the construction of a more reliable and robust 16S rRNA gene phylogeny, the authentic and nearly complete 16S rRNA gene sequences of all the Microbacterium type strains were selected through pairwise comparison of the sequences contained in several public databases including the List of Prokaryotic names with Standing in Nomenclature (LPSN). The clustering of the ten study strains into five distinct groups was apparent in this single gene-based phylogenetic tree. In addition, the 16S rRNA gene sequences of a few type strains were shown to be incorrectly listed in LPSN. An overall phylogenomic clustering of the genus Microbacterium was performed with a total of 113 genomes by core genome analysis. As a result, nine major (≥ three type strains) and eight minor (two type strains) clusters were defined mostly at gene support index of 92 and mean intra-cluster OrthoANIu of >80.00%. All of the study strains were assigned to a Microbacterium liquefaciens clade and distributed further into four subclusters in the core genome-based phylogenetic tree. In vitro phenotypic assays for physiological, biochemical, and chemotaxonomic characteristics were also carried out with the ten study strains and seven closely related type strains. Comparison of the overall genomic relatedness indices (OGRI) including OrthoANIu and digital DNA-DNA hybridization supported that the study strains constituted four new species of the genus Microbacterium. In addition, some Microbacterium type strains were reclassified as members of preexisting species. Moreover, some of them were embedded in a new genus of the family Microbacteriaceae based on their distinct separation in the core genome-based phylogenetic tree and amino acid identity matrices. Based on the results here, four new species, namely, Microbacterium aurugineum sp. nov., Microbacterium croceum sp. nov., Microbacterium galbinum sp. nov., and Microbacterium sufflavum sp. nov., are described, along with the proposal of Paramicrobacterium gen. nov. containing five reclassified Microbacterium species from the "Microbacterium agarici clade", with Paramicrobacterium agarici gen. nov., comb. nov. as the type species.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - Hong Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, Republic of Korea
- BioPS Co., Ltd., Daejeon, Republic of Korea
| |
Collapse
|
2
|
Bellassi P, Fontana A, Callegari ML, Cappa F, Morelli L. Microbacterium paulum sp. nov., isolated from microfiltered milk. Int J Syst Evol Microbiol 2021; 71. [PMID: 34807813 DOI: 10.1099/ijsem.0.005119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, strictly aerobic, short rod-shaped bacterium, designated 2CT, was isolated from freshly packaged microfiltered milk. This strain was able to grow within the NaCl concentration range of 0-5 % (w/v), temperature range of 8-37 °C (optimally at 30 °C) and at pH 6.0-10.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 2CT was closely related to species of the genus Microbacterium, with the highest sequence similarity (99.2 %) to Microbacterium lacticum DSM 20427T as well as Microbacterium flavum DSM 18909T (=YM18-098T). The phylogenetic tree based on 16S rRNA genes showed that strain 2CT clustered with M. flavum DSM 18909T. However, the phylogenetic tree based on concatenated 16S rRNA and four housekeeping genes showed that strain 2CT clustered with M. lacticum DSM 20427T. Furthermore, the phylogenomic tree showed that strain 2CT clustered with M. lacticum DSM 20427T and M. flavum DSM 18909T. The major respiratory quinones were MK-10, MK-11 and MK-12. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The polar lipid composition of strain 2CT consisted of diphosphatidylglycerol, phosphatidylglycerol, three unidentified glycolipids and two unidentified lipids. The cell-wall peptidoglycan type was a variant of B1α {Gly} [l-Lys] d-Glu-l-Lys, with the amino acids lysine, glycine, alanine and glutamic acid. The whole-cell sugars consisted of galactose, glucose, ribose and minor amounts of rhamnose. In addition, strain 2CT showed a glycolyl-type cell wall. The genomic DNA G+C content was 69.8mol%, while the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with the closely related Microbacterium species were below the recognized thresholds of 95-96 % ANI and 70 % DDH for species definition. Based on the phenotypic and genotypic data, strain 2CT (=LMG 32277T=CECT 30329T) is considered to represent a new species, for which the name Microbacterium paulum sp. nov. is proposed.
Collapse
Affiliation(s)
- Paolo Bellassi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Cappa
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Li X, Zhang L, Huang F, Zhao J, Wang H, Jiao Y, Qian L, Wang X, Xiang W. Microbacterium helvum sp. nov., a novel actinobacterium isolated from cow dung. Arch Microbiol 2021; 203:3287-3294. [PMID: 33860851 DOI: 10.1007/s00203-021-02311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
A Gram-positive, aerobic, non-motile, non-spore-forming, short rod-shaped strain, NEAU-LLCT, was isolated from cow dung in Shangzhi City, Heilongjiang Province, Northeast China and identified by a polyphasic taxonomic study. Colonies was light yellow, round, with entire margin. Strain NEAU-LLCT was grown at 15-45 ℃ and pH 6.0-10.0. NaCl concentration ranged from 0 to 5% (W/V). The 16S rRNA gene sequence of NEAU-LLCT showed the high similarities with Microbacterium kyungheense JCM 18735T (98.5%), Microbacterium trichothecenolyticum JCM 1358T (98.3%) and Microbacterium jejuense JCM 18734T (98.2%). The whole-cell sugars were glucose, rhamnose and ribose. The menaquinones contained MK-12 and MK-13. Ornithine, glutamic acid, lysine and a small amount of alanine and glycine were the amino acids in the hydrolyzed products of the cell wall. The major fatty acids were iso-C16:0, iso-C18:0, anteiso-C15:0 and anteiso-C17:0. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The genome of NEAU-LLCT was 4,369,375 bp and G + C content is 70.28 mol%. A combination of DNA-DNA hybridization result and some phenotypic characteristics demonstrated that strain NEAU-LLCT could be distinguished from its closely related strains. Therefore, the strain NEAU-LLCT was considered to represent a novel species, which was named Microbacterium helvum sp. (Type strain NEAU-LLCT = CCTCC AA 2018026T = JCM 32661T).
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Lida Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Fuyan Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Yanjie Jiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Lulu Qian
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Heo J, Cho H, Kim MA, Hamada M, Tamura T, Saitou S, Kim SJK, Kwon SW. Microbacterium protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis. Int J Syst Evol Microbiol 2020; 70:2226-2232. [DOI: 10.1099/ijsem.0.003967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, strictly aerobic, polar flagellated, short rod-shaped bacterium, designated DFW100M-13T, was isolated from gut of the larva of Protaetia brevitarsis seulensis collected from Wanju-gun, South Korea. The growth range of NaCl concentration was 0–3 % (w/v) (optimally 0 % (w/v)), the temperature range for growth was 10–40 °C (optimally 28–30 °C), and the pH range for growth was pH 6.0–9.0 (optimally pH 7.0–8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DFW100M-13T had a high sequence similarity to members of the genus
Microbacterium
, having the highest similarity with
Microbacterium luticocti
DSM 19459T (97.7 %),
Microbacterium rhizosphaerae
CHO1T (97.1 %), and
Microbacterium immunditiarum
SK 18T (97.0 %), and formed a distinct lineage with
Microbacterium luticocti
DSM 19459T within the genus
Microbacterium
. A phylogenetic tree based on house-keeping genes also showed the result similar to the 16S rRNA gene-based tree. The main respiratory quinone (>10 %) was MK-11, MK-12 and MK-10, and the predominant cellular fatty acids (>10 %) were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, an inidentified glycolipid and an unidnetified lipid. The peptidoglycan type was supposed to be the B2ß with amino acids d-alanine, d-glutamic acid, glycine, l-homoserine and d-ornithine. The genomic DNA G+C content was 68.0 mol%. Based on the polyphasic taxonomic data, strain DFW100M-13T is considered to represent a novel species, for which the name Microbacterium protaetiae sp. nov. is proposed. The type strain is DFW100M-13T (=KACC 19323T=NBRC 113120T).
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hayoung Cho
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Mi Ae Kim
- Industrial Insect Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Moriyuki Hamada
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomohiko Tamura
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satomi Saitou
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Soo-Jin Kim Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
5
|
Dong K, Yang J, Lu S, Pu J, Lai XH, Jin D, Li J, Zhang G, Wang X, Zhang S, Lei W, Ren Z, Wu X, Huang Y, Wang S, Xu J. Microbacterium wangchenii sp. nov., isolated from faeces of Tibetan gazelles ( Procapra picticaudata) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:1307-1314. [PMID: 31829917 DOI: 10.1099/ijsem.0.003912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of Gram-stain-positive, aerobic, non-spore-forming, non-motile, rod-shaped bacteria (designated dk512T and dk508) were isolated from the faeces of Tibetan gazelle (Procapra picticaudata) collected from the Qinghai-Tibet Plateau, PR China. The 16S rRNA gene sequences of the strains showed the highest identity to Microbacterium saccharophilum K-1T (98.0 and 97.9 % similarity, respectively). The phylogenetic analysis based on 16S rRNA gene sequences revealed that dk512T and dk508 were members of the genus Microbacterium, and most closely related to strains Microbacterium mitrae M4-8T and Microbacterium hatanonis FCC-01T. The strains grew optimally on brain-heart infusion (BHI) agar with 5.0 % (v/v) sheep blood at 30 °C, pH 7.0 and with 1.0 % (w/v) NaCl. The genome of type strain dk512T was 3.8 Mb with a G+C content of 70.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain dk512T and previously characterized Microbacterium species were <95 and <70 %, respectively. In strain dk512T, the detected primary cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0, the main respiratory quinones were MK-9 (37.9 %) and MK-10 (35.7 %), and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol and three unidentified glycolipids. The major cell-wall sugars were rhamnose, ribose and galactose. Alanine, glutamic acid, glycine and ornithine were in the cell-wall peptidoglycan. Based on phenotypic data and phylogenetic inference, these two strains represent a novel species of the genus Microbacterium, named here as Microbacterium wangchenii sp. nov, where dk512T is designated the type strain (=CGMCC 1.16590T=JCM 33494T=KCTC 49313T).
Collapse
Affiliation(s)
- Kui Dong
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan Province, 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Wenjing Lei
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Zhihong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaomin Wu
- Shaanxi Institute of Zoology, Xi'an 710032, Shaanxi Province, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
6
|
Sui Q, Chen Y, Yu D, Wang T, Hai Y, Zhang J, Chen M, Wei Y. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. ENVIRONMENT INTERNATIONAL 2019; 133:105183. [PMID: 31675559 DOI: 10.1016/j.envint.2019.105183] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Swine wastewater is an important reservoir of spread antibiotic resistance to the environment. Intra- and extracellular antibiotic resistance genes (iARGs and eARGs) were quantified during two typical swine wastewater treatment processes including a sequencing membrane bioreactor (SMBR) at pilot-scale and anaerobic-anoxic-oxic (A2O) at full-scale. The concentrations of iARGs and eARGs in raw wastewater were 3.42E+09 and 3.79E+07 copies/mL, respectively. The compositions were different between iARGs and eARGs. SMBR showed 0.63 log higher removals in the concentrations of iARG than A2O, while similar removal effects (3.01-3.44 log copies/mL) of eARGs were performed by the two processes. It suggested that membrane separation had advantages in the concentration removals of iARG rather than eARG. sul1 took the dominance in eARGs in effluent and had positive correlations with intI1, which indicated the risk of horizontal gene transfer of eARGs after wastewater discharge. Microbial community structures were estimated by 16S rRNA gene sequencing with both intra- and extracellular DNA (iDNA and eDNA). Compared between the effluent samples of the two treatment processes, microbial community structures estimated by iDNA had great differences, however which were similar for eDNA. Microbial community and water-quality parameters were the major influencing factors on ARG occurrences during swine wastewater treatment.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tuo Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Hai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Li YR, Zhu ZN, Li YQ, Xiao M, Han MX, Wadaan MAM, Hozzein WN, An DD, Li WJ. Microbacterium halophytorum sp. nov., a novel endophytic actinobacterium isolated from halophytes. Int J Syst Evol Microbiol 2018; 68:3928-3934. [PMID: 30362936 DOI: 10.1099/ijsem.0.003092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two actinobacterial strains, YJYP 303T and YZYP 518, were isolated from two species of halophytes collected from the southern edge of the Gurbantunggut Desert. Cells were Gram-stain-positive, aerobic, short rods and without flagella. Growth of the two strains was found to occur at 4-44 °C, pH 6.0-12.0 and in the presence of up to 15 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains are associated with members of the genus Microbacterium. In the phylogenetic tree, the two strains shared a clade with Microbacterium halotolerans YIM 70130T (97.58 % 16S rRNA gene sequence identity) and Microbacterium populi KCTC 29152T (96.54 %). The average nucleotide identity values of strain YJYP 303T and YZYP 518 to M. halotolerans YIM 70130T were determined to be 79.97 and 80.03 %, respectively. The genomic DNA G+C contents of strains YJYP 303T and YZYP 518 were 69.72 and 70.57 %, respectively. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The predominant respiratory quinones was MK-11, followed by MK-10 and MK-12. The muramic acid type of peptidoglycan was N-glycolyl. The whole-cell sugars were mannose, ribose, rhamnose, glucose, galactose and two unidentified sugars. The cell-wall amino acids were glutamic acid, ornithine, glycine and alanine. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. On the basis of the evidence presented in this study, strains YJYP 303T and YZYP 518 are characterized as members of a novel species in the genus Microbacterium, for which the name Microbacteriumhalophytorum sp. nov. is proposed. The type strain is YJYP 303T (=CGMCC 1.16264T=KCTC 49100T).
Collapse
Affiliation(s)
- Yan-Ru Li
- 1Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Ürümqi, 830054, PR China
| | - Zhi-Nan Zhu
- 1Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Ürümqi, 830054, PR China
| | - Yu-Qian Li
- 2Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Min Xiao
- 3State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ming-Xian Han
- 3State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Mohammed A M Wadaan
- 4Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Wael N Hozzein
- 4Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,5Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Deng-Di An
- 1Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Ürümqi, 830054, PR China
| | - Wen-Jun Li
- 6Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, PR China.,3State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| |
Collapse
|
8
|
Yang ZW, Salam N, Mohany M, Chinnathambi A, Alharbi SA, Xiao M, Hozzein WN, Li WJ. Microbacterium album sp. nov. and Microbacterium deserti sp. nov., two halotolerant actinobacteria isolated from desert soil. Int J Syst Evol Microbiol 2017; 68:217-222. [PMID: 29125456 DOI: 10.1099/ijsem.0.002485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains SYSU D8007T and SYSU D8014T were isolated from desert soil collected from Saudi Arabia. The two isolates were Gram-stain-positive, non-motile, aerobic and non-spore-forming. These strains were able to grow at 4-45 °C and in the presence of up to 8 % (w/v) NaCl. Strain SYSU D8007T could grow at pH 6.0-10.0, and strain SYSU D8014T at pH 5.0-10.0. They shared highest 16S rRNA gene sequence similarities with Microbacterium marinilacus YM11-607T and Microbacterium paludicola US15T. Menaquinones MK-11 and MK-12 were detected as the respiratory quinones. The polar lipid profiles of strains SYSU D8007T and SYSU D8014T consisted of diphosphatidylglycerol and phosphatidylglycerol, but differed in the number of unidentified glycolipids. Strain SYSU D8007T contained anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 as the predominant fatty acids, while strain SYSU D8014T contained anteiso-C15 : 0 and anteiso-C17 : 0 as the major fatty acids (>10 %). While glucose, rhamnose and ribose were detected in strain SYSU D8007T as the whole-cell sugars, galactose, glucose and rhamnose were present in strain SYSU D8014T. The genomic DNA G+C content of strains SYSU D8007T and SYSU D8014T was 72.2 and 73.6 mol%, respectively. Based on phenotypic, genotypic and phylogenetic characteristics, it can be concluded that strains SYSU D8007T and SYSU D8014T represent two novel species of the genus Microbacterium, for which the names Microbacterium album sp. nov. and Microbacterium deserti sp. nov. are proposed, respectively. The type strains are SYSU D8007T (=CGMCC 1.15794T=KCTC 39990T) and SYSU D8014T (=CPCC 204619T=KCTC39991T).
Collapse
Affiliation(s)
- Zi-Wen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mohamed Mohany
- Bioproducts Research Chair (BRC), Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Chinnathambi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wael N Hozzein
- Bioproducts Research Chair (BRC), Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürűmqi 830011, PR China
| |
Collapse
|
9
|
Microbacterium rhizosphaerae sp. nov., isolated from a Ginseng field, South Korea. Antonie van Leeuwenhoek 2016; 110:11-18. [PMID: 27688210 DOI: 10.1007/s10482-016-0768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
A novel Gram-stain positive, aerobic, short rod-shaped, non-motile bacterium, designated strain CHO1T, was isolated from rhizosphere soil from a ginseng agriculture field. Strain CHO1T was observed to form yellow colonies on R2A agar medium. The cell wall peptidoglycan was found to contain alanine, glycine, glutamic acid, D-ornithine and serine. The cell wall sugars were identified as galactose, mannose, rhamnose and ribose. Strain CHO1T was found to contain MK-11, MK-12, MK-13 as the predominant menaquinones and anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, an unidentified phospholipid and three unidentified glycolipids were found to be present in strain CHO1T. Based on 16S rRNA gene sequence analysis, strain CHO1T was found to be closely related to Microbacterium mangrovi DSM 28240T (97.81 % similarity), Microbacterium immunditiarum JCM 14034T (97.45 %), Microbacterium oryzae JCM 16837T (97.33 %) and Microbacterium ulmi KCTC 19363T (97.10 %) and to other species of the genus Microbacterium. The DNA G+C content of CHO1T was determined to be 70.1 mol %. The DNA-DNA hybridization values of CHO1T with M. mangrovi DSM 28240T, M. immunditiarum JCM 14034T, M. oryzae JCM 16837T and M. ulmi KCTC 19363T were 46.7 ± 2, 32.4 ± 2, 32.0 ± 2 and 29.2 ± 2 %, respectively. On the basis of genotypic, phenotypic and phylogenetic properties, it is concluded that strain CHO1T represents a novel species within the genus Microbacterium, for which the name Microbacterium rhizosphaerae sp. nov. is proposed. The type strain of M. rhizosphaerae is CHO1T (= KEMB 7306-513T = JCM 31396T).
Collapse
|