1
|
Groenewald M, Hittinger C, Bensch K, Opulente D, Shen XX, Li Y, Liu C, LaBella A, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe K, Rosa C, Boekhout T, Čadež N, éter G, Sampaio J, Lachance MA, Yurkov A, Daniel HM, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A. A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Stud Mycol 2023; 105:1-22. [PMID: 38895705 PMCID: PMC11182611 DOI: 10.3114/sim.2023.105.01] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2024] Open
Abstract
The subphylum Saccharomycotina is a lineage in the fungal phylum Ascomycota that exhibits levels of genomic diversity similar to those of plants and animals. The Saccharomycotina consist of more than 1 200 known species currently divided into 16 families, one order, and one class. Species in this subphylum are ecologically and metabolically diverse and include important opportunistic human pathogens, as well as species important in biotechnological applications. Many traits of biotechnological interest are found in closely related species and often restricted to single phylogenetic clades. However, the biotechnological potential of most yeast species remains unexplored. Although the subphylum Saccharomycotina has much higher rates of genome sequence evolution than its sister subphylum, Pezizomycotina, it contains only one class compared to the 16 classes in Pezizomycotina. The third subphylum of Ascomycota, the Taphrinomycotina, consists of six classes and has approximately 10 times fewer species than the Saccharomycotina. These data indicate that the current classification of all these yeasts into a single class and a single order is an underappreciation of their diversity. Our previous genome-scale phylogenetic analyses showed that the Saccharomycotina contains 12 major and robustly supported phylogenetic clades; seven of these are current families (Lipomycetaceae, Trigonopsidaceae, Alloascoideaceae, Pichiaceae, Phaffomycetaceae, Saccharomycodaceae, and Saccharomycetaceae), one comprises two current families (Dipodascaceae and Trichomonascaceae), one represents the genus Sporopachydermia, and three represent lineages that differ in their translation of the CUG codon (CUG-Ala, CUG-Ser1, and CUG-Ser2). Using these analyses in combination with relative evolutionary divergence and genome content analyses, we propose an updated classification for the Saccharomycotina, including seven classes and 12 orders that can be diagnosed by genome content. This updated classification is consistent with the high levels of genomic diversity within this subphylum and is necessary to make the higher rank classification of the Saccharomycotina more comparable to that of other fungi, as well as to communicate efficiently on lineages that are not yet formally named. Taxonomic novelties: New classes: Alloascoideomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Dipodascomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Lipomycetes M. Groenew., Hittinger, Opulente, A. Rokas, Pichiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Sporopachydermiomycetes M. Groenew., Hittinger, Opulente & A. Rokas, Trigonopsidomycetes M. Groenew., Hittinger, Opulente & A. Rokas. New orders: Alloascoideomycetes: Alloascoideales M. Groenew., Hittinger, Opulente & A. Rokas; Dipodascomycetes: Dipodascales M. Groenew., Hittinger, Opulente & A. Rokas; Lipomycetes: Lipomycetales M. Groenew., Hittinger, Opulente & A. Rokas; Pichiomycetes: Alaninales M. Groenew., Hittinger, Opulente & A. Rokas, Pichiales M. Groenew., Hittinger, Opulente & A. Rokas, Serinales M. Groenew., Hittinger, Opulente & A. Rokas; Saccharomycetes: Phaffomycetales M. Groenew., Hittinger, Opulente & A. Rokas, Saccharomycodales M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiomycetes: Sporopachydermiales M. Groenew., Hittinger, Opulente & A. Rokas; Trigonopsidomycetes: Trigonopsidales M. Groenew., Hittinger, Opulente & A. Rokas. New families: Alaninales: Pachysolenaceae M. Groenew., Hittinger, Opulente & A. Rokas; Pichiales: Pichiaceae M. Groenew., Hittinger, Opulente & A. Rokas; Sporopachydermiales: Sporopachydermiaceae M. Groenew., Hittinger, Opulente & A. Rokas. Citation: Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen X-X, Li Y, Liu C, LaBella AL, Zhou X, Limtong S, Jindamorakot S, Gonçalves P, Robert V, Wolfe KH, Rosa CA, Boekhout T, Čadež N, Péter G, Sampaio JP, Lachance M-A, Yurkov AM, Daniel H-M, Takashima M, Boundy-Mills K, Libkind D, Aoki K, Sugita T, Rokas A (2023). A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Studies in Mycology 105: 1-22. doi: 10.3114/sim.2023.105.01 This study is dedicated to the memory of Cletus P. Kurtzman (1938-2017), a pioneer of yeast taxonomy.
Collapse
Affiliation(s)
- M. Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - C.T. Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic
Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow
Institute for the Study of Evolution, University of Wisconsin-Madison,
Madison, WI 53726, USA;
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - D.A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic
Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow
Institute for the Study of Evolution, University of Wisconsin-Madison,
Madison, WI 53726, USA;
- Department of Biology, Villanova University, Villanova, PA
19085;
| | - X.-X. Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
310058, China;
| | - Y. Li
- Institute of Marine Science and Technology, Shandong University, Qingdao
266237, China;
| | - C. Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
310058, China;
| | - A.L. LaBella
- Department of Bioinformatics and Genomics, The University of North
Carolina at Charlotte, Charlotte NC 28223, USA;
| | - X. Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease
Control, Integrative Microbiology Research Center, South China Agricultural
University, Guangzhou 510642, China;
| | - S. Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University,
Bangkok 10900, Thailand;
| | - S. Jindamorakot
- Microbial Diversity and Utilization Research Team, National Center for
Genetic Engineering and Biotechnology, National Science and Technology
Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang,
Pathum Thani 12120, Thailand;
| | - P. Gonçalves
- Associate Laboratory i4HB–Institute for Health and Bioeconomy,
NOVA School of Science and Technology, Universidade NOVA de Lisboa,
Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life
Sciences, NOVA School of Science and Technology, Universidade NOVA de
Lisboa, Caparica, Portugal;
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, 3584 Utrecht, The
Netherlands;
| | - K.H. Wolfe
- Conway Institute and School of Medicine, University College Dublin,
Dublin 4, Ireland;
| | - C.A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de
Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil;
| | - T. Boekhout
- College of Sciences, King Saud University, Riyadh, Saudi
Arabia;
| | - N. Čadež
- Food Science and Technology Department, Biotechnical Faculty, University
of Ljubljana, Ljubljana, Slovenia;
| | - G. éter
- National Collection of Agricultural and Industrial Microorganisms,
Institute of Food Science and Technology, Hungarian University of
Agriculture and Life Sciences, H-1118, Budapest, Somlói út
14-16., Hungary;
| | - J.P. Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516
Caparica, Portugal;
| | - M.-A. Lachance
- Department of Biology, University of Western Ontario, London, ON N6A
5B7, Canada;
| | - A.M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell
Cultures, 38124 Braunschweig, Germany;
| | - H.-M. Daniel
- BCCM/MUCL, Earth and Life Institute, Mycology Laboratory,
Université catholique de Louvain, 1348 Louvain-la-Neuve,
Belgium;
| | - M. Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI),
Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502,
Japan;
| | - K. Boundy-Mills
- Food Science and Technology, University of California Davis, Davis, CA,
95616, USA;
| | - D. Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera,
Instituto Andino Patagónico de Tecnologías Biológicas y
Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB,
Quintral 1250, San Carlos de Bariloche, 8400, Río Negro,
Argentina;
| | - K. Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI),
Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502,
Japan;
| | - T. Sugita
- Laboratory of Microbiology, Meiji Pharmaceutical University, Noshio,
Kiyose, Tokyo 204-8588, Japan;
| | - A. Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative,
Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Siangpro N, Chuakrut S, Sirimanapong W, Tanasupawat S, Phongsopitanun W, Meksiriporn B, Boonnorat J, Sarin S, Kucharoenphaibul S, Jutakanoke R. Lactiplantibacillus argentoratensis and Candida tropicalis Isolated from the Gastrointestinal Tract of Fish Exhibited Inhibitory Effects against Pathogenic Bacteria of Nile Tilapia. Vet Sci 2023; 10:vetsci10020129. [PMID: 36851433 PMCID: PMC9958883 DOI: 10.3390/vetsci10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Nile tilapia is one of the most consumed farmed fish in the world. The outbreak of pathogenic bacterial diseases causes high mortality rates and economic losses in Nile tilapia farming. Antibiotic administrations are commonly utilized to inhibit and prevent bacterial infections. However, antibiotics are expensive and cause serious concerns for antibiotic resistance in fish that can be potentially transferred to humans. As an alternative solution, probiotics can be used to prevent infection of pathogenic bacteria in fish. In this work, both bacteria and yeast were isolated from fish gastrointestinal tracts and their inhibitory activity against Nile tilapia pathogenic bacteria was evaluated, as well as other probiotic properties. In this study, 66 bacteria and 176 acid tolerant yeasts were isolated from fish gastrointestinal tracts. Of all isolated microorganisms, 39 bacterial and 15 yeast isolates with inhibitory effect against pathogens were then examined for their probiotic properties (acidic and bile salt resistance, adhesion potential, and biofilm formation), formation of antibacterial factor survival rate under simulated gastrointestinal fluid, and safety evaluation. AT8/5 bacterial isolate demonstrated probiotic properties and the highest inhibition against all 54 tested pathogens while YON3/2 yeast isolate outperformed the inhibitory effect among all yeast isolates. These two probiotic isolates were further identified by 16S rDNA and the D1/D2 domain of 26S rDNA sequence analysis for bacterial and yeast identification, respectively. AT8/5 and YON3/2 showed the highest similarity to Lactiplantibacillus argentoratensis and Candida tropicalis, respectively. This is the first report on isolated L. argentoratensis and C. tropicalis with antipathogenic bacteria of Nile tilapia properties. Collectively, AT8/5 and YON3/2 could be potentially used as promising alternatives to existing antibiotic methods to prevent pathogenic bacteria infection in Nile tilapia farming.
Collapse
Affiliation(s)
- Noppadon Siangpro
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Songkran Chuakrut
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73110, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyarit Meksiriporn
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Siripun Sarin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964614
| |
Collapse
|
3
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
4
|
Sakpuntoon V, Angchuan J, Boonmak C, Khunnamwong P, Jacques N, Grondin C, Casaregola S, Srisuk N. Savitreea pentosicarens gen. nov., sp. nov., a yeast species in the family Saccharomycetaceae isolated from a grease trap. Int J Syst Evol Microbiol 2020; 70:5665-5670. [PMID: 32924919 DOI: 10.1099/ijsem.0.004457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).
Collapse
Affiliation(s)
- Varunya Sakpuntoon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Noémie Jacques
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Cécile Grondin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, CIRM-Levures, 78350, Jouy-en-Josas, France
| | - Serge Casaregola
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, CIRM-Levures, 78350, Jouy-en-Josas, France
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|