1
|
Yang ZN, Wang Y, Luo SQ. Effect of pathogen Globisporangium ultimum on plant growth and colonizing bacterial communities. Microbiol Res 2024; 290:127937. [PMID: 39489136 DOI: 10.1016/j.micres.2024.127937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/26/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Plants recruit plant-associated microbes from soil to enhance their growth and mitigate the adverse effects of pathogen invasion on plant health. How pathogens impact the interactions of the plant-associated microbes and plant growth is poorly understood. We established S-microsystems (sterile soil inoculated with 101 bacteria isolated from humus soil with Artemisia annua, Oryza sativa or Houttuynia cordata), and N-microsystems (natural soil with these plants) to evaluate the effects of the fungus Globisporangium ultimum on plant growth and their colonizing bacterial communities (CBCs). S-microsystems and N-microsystems were inoculated with and without G. ultimum, respectively. Their seedling growth and CBCs were investigated. Plant height and root numbers in A. annua, O. sativa and H. cordata S-microsystems with G. ultimum were 34.5 % and 52.8 %, 23.1 % and 31.3 %, 102.1 % and 45.0 % higher than those without G. ultimum, respectively. The CBCs were diverse among S-microsystems of A. annua, O. sativa and H. cordata, and the CBC abundances in the three S-microsystems without G. ultimum were higher than those with G. ultimum. The relative abundances of bacterial genera Rhizobium, Pseudomonas, Brevundimonas and Cupriavidus were significantly positively related to plant growth. We determined that the CBCs in A. annua, O. sativa and H. cordata were selective and related to the plant species, and can mitigate disadvantageous influences of G. ultimum on seedling growth. The plants and their CBCs' abundance and composition were differentially affected by G. ultimum. Our results provide evidence that CBCs promote plant growth due to dynamic changes in the composition and abundance of CBC members, which were affected by plant species and biotic factors.
Collapse
Affiliation(s)
- Zhan-Nan Yang
- Guizhou Key Laboratory for Mountainous Environment Information and Ecological Protection, Guizhou Normal University, Guizhou, Guiyang 550001, China
| | - Yu Wang
- School of Life Sciences, Guizhou Normal University, Guizhou, Guiyang 550001, China
| | - Shi-Qiong Luo
- School of Life Sciences, Guizhou Normal University, Guizhou, Guiyang 550001, China.
| |
Collapse
|
2
|
Min H, O'Loughlin EJ, Kwon MJ. Anaerobic microbial metabolism in soil columns affected by highly alkaline pH: Implication for biogeochemistry near construction and demolition waste disposal sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122127. [PMID: 39128342 DOI: 10.1016/j.jenvman.2024.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Construction and demolition wastes (CDWs) have become a significant environmental concern due to urbanization. CDWs in landfill sites can generate high-pH leachate and various constituents (e.g., acetate and sulfate) following the dissolution of cement material, which may affect subsurface biogeochemical properties. However, the impact of CDW leachate on microbial reactions and community compositions in subsurface environments remains unclear. Therefore, we created columns composed of layers of concrete debris containing-soil (CDS) and underlying CDW-free soil, and fed them artificial groundwater with or without acetate and/or sulfate. In all columns, the initial pH 5.6 of the underlying soil layer rapidly increased to 10.8 (without acetate and sulfate), 10.1 (with sulfate), 10.1 (with acetate), and 8.3 (with acetate and sulfate) within 35 days. Alkaliphilic or alkaline-resistant microbes including Hydrogenophaga, Silanimonas, Algoriphagus, and/or Dethiobacter were dominant throughout the incubation in all columns, and their relative abundance was highest in the column without acetate and sulfate (50.7-86.6%). Fe(III) and sulfate reduction did not occur in the underlying soil layer without acetate. However, in the column with acetate alone, pH was decreased to 9.9 after day 85 and Fe(II) was produced with an increase in the relative abundance of Fe(III)-reducing bacteria up to 9.1%, followed by an increase in the methanogenic archaea Methanosarcina, suggestive of methanogenesis. In the column with both acetate and sulfate, Fe(III) and sulfate reduction occurred along with an increase in both Fe(III)- and sulfate-reducing bacteria (19.1 and 17.7%, respectively), while Methanosarcina appeared later. The results demonstrate that microbial Fe(III)- and sulfate-reduction and acetoclastic methanogenesis can occur even in soils with highly alkaline pH resulting from the dissolution of concrete debris.
Collapse
Affiliation(s)
- Haeun Min
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
4
|
Miyazaki U, Mizutani D, Hashimoto Y, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Helicovermis profundi gen. nov., sp. nov., a novel mesophilic, asporogenous bacterium within the Clostridia isolated from a deep-sea hydrothermal vent chimney. Antonie Van Leeuwenhoek 2024; 117:24. [PMID: 38217723 DOI: 10.1007/s10482-023-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).
Collapse
Affiliation(s)
- Urara Miyazaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daiki Mizutani
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akihiro Tame
- Depertment of Marine and Earth Sciences, Marine Works Japan Ltd, 3-54-1 Oppamahigashi, Yokosuka, 237-0063, Japan
- General Affairs Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
| | - Ken Takai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan.
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
5
|
Jia Z, Lipus D, Burckhardt O, Bussert R, Sondermann M, Bartholomäus A, Wagner D, Kallmeyer J. Enrichment of rare methanogenic Archaea shows their important ecological role in natural high-CO 2 terrestrial subsurface environments. Front Microbiol 2023; 14:1105259. [PMID: 37293225 PMCID: PMC10246774 DOI: 10.3389/fmicb.2023.1105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Long-term stability of underground CO2 storage is partially affected by microbial activity but our knowledge of these effects is limited, mainly due to a lack of sites. A consistently high flux of mantle-derived CO2 makes the Eger Rift in the Czech Republic a natural analogue to underground CO2 storage. The Eger Rift is a seismically active region and H2 is produced abiotically during earthquakes, providing energy to indigenous microbial communities. Methods To investigate the response of a microbial ecosystem to high levels of CO2 and H2, we enriched microorganisms from samples from a 239.5 m long drill core from the Eger Rift. Microbial abundance, diversity and community structure were assessed using qPCR and 16S rRNA gene sequencing. Enrichment cultures were set up with minimal mineral media and H2/CO2 headspace to simulate a seismically active period with elevated H2. Results and discussion Methane headspace concentrations in the enrichments indicated that active methanogens were almost exclusively restricted to enrichment cultures from Miocene lacustrine deposits (50-60 m), for which we observed the most significant growth. Taxonomic assessment showed microbial communities in these enrichments to be less diverse than those with little or no growth. Active enrichments were especially abundant in methanogens of the taxa Methanobacterium and Methanosphaerula. Concurrent to the emergence of methanogenic archaea, we also observed sulfate reducers with the metabolic ability to utilize H2 and CO2, specifically the genus Desulfosporosinus, which were able to outcompete methanogens in several enrichments. Low microbial abundance and a diverse non-CO2 driven microbial community, similar to that in drill core samples, also reflect the inactivity in these cultures. Significant growth of sulfate reducing and methanogenic microbial taxa, which make up only a small fraction of the total microbial community, emphasize the need to account for rare biosphere taxa when assessing the metabolic potential of microbial subsurface populations. The observation that CO2 and H2-utilizing microorganisms could only be enriched from a narrow depth interval suggests that factors such as sediment heterogeneity may also be important. This study provides new insight on subsurface microbes under the influence of high CO2 concentrations, similar to those found in CCS sites.
Collapse
Affiliation(s)
- Zeyu Jia
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Oliver Burckhardt
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Robert Bussert
- Applied Geochemistry, Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | - Megan Sondermann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | | | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
6
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
7
|
He X, Li Z, Li X, Zhao H, Hu Y, Han W, Wang C, Yin C, Chen Y. The fecal microbiota of gravidas with fetal growth restriction newborns characterized by metagenomic sequencing. Curr Res Transl Med 2023; 71:103354. [PMID: 36434943 DOI: 10.1016/j.retram.2022.103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fetal growth restriction (FGR) is a complex obstetric complication with various causes and of great harm. However, the specific pathogenesis of FGR is unclear, which limits its effective treatment. Gut microbiota dysbiosis was found to be important in pathogenesis of various diseases. However, its role in FGR development remains unclear and needs to be clarified. METHODS In our case-control study, we recruited eight FGR and eight control female participants and collected their fecal samples in third trimester before delivery. We performed metagenomic sequencing and bioinformatic analysis to compare the gut microbiota composition and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the two groups. RESULTS Our results showed that totally 20 gut microbes were significantly different between two groups (p<0•05), and the correlation analysis found that g__Roseomonas and g__unclassified_f__Propionibacteriaceae were significantly positive correlated with both maternal body mass index (BMI) before delivery, placental weight, and neonatal birth weight (BW) percentile (all p<0•05), while g__Marinisporobacter and g__Sphingomonas were significantly negative correlated with both neonatal BMI and neonatal BW percentile (all p<0•05). Through KEGG pathway analysis, we found that the abundance of the Nitrogen metabolism pathway decreased significantly (p<0•05) whereas the abundance of the Amoebiasis pathway increased significantly in the FGR group (p<0•05). CONCLUSION In this study, we demonstrated that the occurrence of FGR is associated with the change of gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Xin He
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Zhengpeng Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaohui Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Huanying Zhao
- Genomics Research Platform, Core Facilities Center, Capital Medical University, Beijing 100069, China
| | - Yanan Hu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Wenli Han
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Chen Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China.
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China.
| |
Collapse
|
8
|
Dev S, Galey M, Chun CL, Novotny C, Ghosh T, Aggarwal S. Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia - a solution toward acid mine drainage treatment in cold regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:2007-2020. [PMID: 34821889 DOI: 10.1039/d1em00256b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Failure of sulfate-reducing bacteria (SRB)-mediated treatment of acid mine drainage (AMD) in cold regions due to inhibition of bacteria by acidic pH and low temperature can be overcome by enriching psychrophilic and acidophilic microbial consortia from local metal-rich sediments. In this study, we enriched microbial consortia from Arctic mine sediments at varying pH (3-7) and temperatures (15-37 °C) under anaerobic conditions with repeated sub-culturing in three successive stages, and analyzed the microbial community using 16S rRNA gene sequencing. The enriched SRB genera resulted in high sulfate reduction (85-88%), and significant metal removal (49-99.9%) during the initial stages (stage 1 and 2). Subsequently, sub-culturing the inoculum at pH 3-4.5 resulted in lower sulfate reduction (9-34%) due to the inhibition of SRB by accumulated acetic acid (0.3-9 mM). The microbial metabolic interactions for successful sulfate and metal removal involved initial glycerol co-fermentation to acetic acid at acidic pH (by Desulfosporosinus, Desulfotomaculum, Desulfurospora, and fermentative bacteria including Cellulomonas and Anaerovorax), followed by acetic acid oxidation to CO2 and H2 (by Desulfitobacterium) at neutral pH, and subsequent H2 utilization (by Desulfosporosinus). The results, including the structural and functional properties of enriched microbial consortia, can inform the development of effective biological treatment strategies for AMD in cold regions.
Collapse
Affiliation(s)
- Subhabrata Dev
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Miranda Galey
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chan Lan Chun
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chad Novotny
- Teck Resources Limited, Vancouver, BC V6C 0B3, Canada
| | - Tathagata Ghosh
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Department of Civil, Geological and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
9
|
Townsend LT, Kuippers G, Lloyd JR, Natrajan LS, Boothman C, Mosselmans JFW, Shaw S, Morris K. Biogenic Sulfidation of U(VI) and Ferrihydrite Mediated by Sulfate-Reducing Bacteria at Elevated pH. ACS EARTH & SPACE CHEMISTRY 2021; 5:3075-3086. [PMID: 34825123 PMCID: PMC8607498 DOI: 10.1021/acsearthspacechem.1c00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Globally, the need for radioactive waste disposal and contaminated land management is clear. Here, gaining an improved understanding of how biogeochemical processes, such as Fe(III) and sulfate reduction, may control the environmental mobility of radionuclides is important. Uranium (U), typically the most abundant radionuclide by mass in radioactive wastes and contaminated land scenarios, may have its environmental mobility impacted by biogeochemical processes within the subsurface. This study investigated the fate of U(VI) in an alkaline (pH ∼9.6) sulfate-reducing enrichment culture obtained from a high-pH environment. To explore the mobility of U(VI) under alkaline conditions where iron minerals are ubiquitous, a range of conditions were tested, including high (30 mM) and low (1 mM) carbonate concentrations and the presence and absence of Fe(III). At high carbonate concentrations, the pH was buffered to approximately pH 9.6, which delayed the onset of sulfate reduction and meant that the reduction of U(VI)(aq) to poorly soluble U(IV)(s) was slowed. Low carbonate conditions allowed microbial sulfate reduction to proceed and caused the pH to fall to ∼7.5. This drop in pH was likely due to the presence of volatile fatty acids from the microbial respiration of gluconate. Here, aqueous sulfide accumulated and U was removed from solution as a mixture of U(IV) and U(VI) phosphate species. In addition, sulfate-reducing bacteria, such as Desulfosporosinus species, were enriched during development of sulfate-reducing conditions. Results highlight the impact of carbonate concentrations on U speciation and solubility in alkaline conditions, informing intermediate-level radioactive waste disposal and radioactively contaminated land management.
Collapse
Affiliation(s)
- Luke T. Townsend
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Gina Kuippers
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Jonathan R. Lloyd
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Louise S. Natrajan
- Centre
for Radiochemistry Research, Department of Chemistry, School of Natural
Sciences, The University of Manchester, Manchester M13 9PL, U.K.
| | - Christopher Boothman
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| | - J. Frederick W. Mosselmans
- Diamond
Light Source Ltd., Diamond
House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences,
School of Natural Sciences, The University
of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
10
|
Flynn TM, Antonopoulos DA, Skinner KA, Brulc JM, Johnston E, Boyanov MI, Kwon MJ, Kemner KM, O’Loughlin EJ. Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment. PLoS One 2021; 16:e0251883. [PMID: 34014980 PMCID: PMC8136678 DOI: 10.1371/journal.pone.0251883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly “sulfate-reducing” phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.
Collapse
Affiliation(s)
- Theodore M. Flynn
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | | | - Kelly A. Skinner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jennifer M. Brulc
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Eric Johnston
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Maxim I. Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Man Jae Kwon
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Edward J. O’Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Fischer PQ, Sánchez‐Andrea I, Stams AJM, Villanueva L, Sousa DZ. Anaerobic microbial methanol conversion in marine sediments. Environ Microbiol 2021; 23:1348-1362. [PMID: 33587796 PMCID: PMC8048578 DOI: 10.1111/1462-2920.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023]
Abstract
Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Collapse
Affiliation(s)
- Peter Q. Fischer
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
- Faculty of GeosciencesUtrecht University, Princetonlaan 8aUtrecht3584 CBThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
12
|
Sim MS, Skennerton CT, Orphan VJ. Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS One 2021; 16:e0245069. [PMID: 33444327 PMCID: PMC7808614 DOI: 10.1371/journal.pone.0245069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Collapse
Affiliation(s)
- Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
13
|
Jørgensen BB, Andrén T, Marshall IPG. Sub-seafloor biogeochemical processes and microbial life in the Baltic Sea. Environ Microbiol 2020; 22:1688-1706. [PMID: 31970880 DOI: 10.1111/1462-2920.14920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Thomas Andrén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Ian P G Marshall
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Center for Electromicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Anaerophilus nitritogenes gen. nov., sp. nov., isolated from salt lake sediment in Xinjiang Province, China. Antonie van Leeuwenhoek 2019; 113:417-425. [PMID: 31713080 DOI: 10.1007/s10482-019-01351-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
An obligately anaerobic, nitrate-reducing bacterial strain (MJB2T) was isolated from sediments of saline in Xinjiang province of China. Cells were Gram-stain-positive rods and motile by means of flagella and formed endospores. The novel strain MJB2T was able to grow at 15-37 °C (optimum 28-30 °C), pH 5.8-9.4 (optimum 7.8) and with 1.0-7.0% NaCl (optimum 5.0-6.0%, w/v). Sulfate, sulfite, thiosulfate, elemental sulfur, nitrite and Fe(III) were not used as terminal electron acceptors. Oxidase and catalase reactions were positive. H2S was producted from L-cystine. Complex substrates such as beef extract, peptone and yeast extract can be used as sole energy sources. The DNA G+C content was 29.4 mol%. The major cellular fatty acids (> 10%) were C14:0, C16:1 cis 7 and C16:1 cis 9. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, three unidentified amino lipids, one unidentified amino glycolipid, two unidentified glycolipid, one unidentified aminophospholipid and two unidentified lipids. No respiratory quinones were detected. According to phylogenetic analysis based on 16S rRNA gene sequences, strain MJB2T was affiliated to the family Clostridiaceae (order Clostridiales) with highest 16S rRNA gene sequence similarity of 95.3% to Crassaminicella profunda Ra1766HT. Strain MJB2T exhibited 74.9% ANI values to C. profunda Ra1766HT. In silico DNA-DNA relatedness value between strain MJB2T and C. profunda Ra1766HT was 19.5%. The distinct biochemical, chemotaxonomic and phylogenetic differences from the previously described taxa supported that strain MJB2T represents a novel species of a new genus, for which the name Anaerophilus nitritogenes gen. nov., sp. nov. is proposed. The type strain is MJB2T (=KCTC 15800T=MCCC 1K03631T).
Collapse
|
15
|
Watanabe M, Kojima H, Fukui M. Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie Van Leeuwenhoek 2019; 113:349-355. [PMID: 31628625 DOI: 10.1007/s10482-019-01345-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 11/26/2022]
Abstract
A novel facultative anaerobic and facultative psychrophilic bacterium, designated SPP2T, was isolated from an Antarctic marine sediment. Cells of the isolate were observed to be long rods (0.5 × 5-10 μm), Gram-stain negative and to have gliding motility. For growth, the optimum NaCl concentration was found to be 2-3% and the optimum temperature to be 18-22 °C. Strain SPP2T cannot use sulfate and nitrate as electron acceptors in the presence of lactate. The G+C content of the genomic DNA was determined to be 36.0 mol%.. The major cellular fatty acids were identified as anteiso-C15:0 and iso-C15:0. MK-7 was found to be the predominant respiratory quinone. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belongs to the family Marinifilaceae and to be closely related to Labilibaculum manganireducens 59.10-2MT with 16S rRNA gene sequence identity of 98%. The OrthoANI and dDDH values between the genome sequences of strain SPP2T and its close relative were 84% and 27.3%, which are lower than the threshold values for species delineation. On the basis of phylogenetic and phenotypic characterisation, Labilibaculum antarcticum sp. nov. is proposed with the type strain SPP2T (= NBRC 111151T = CECT 9460T).
Collapse
Affiliation(s)
- Miho Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-8471, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
16
|
Hausmann B, Vandieken V, Pjevac P, Schreck K, Herbold CW, Loy A. Draft Genome Sequence of Desulfosporosinus fructosivorans Strain 63.6F T, Isolated from Marine Sediment in the Baltic Sea. Microbiol Resour Announc 2019; 8:e00427-19. [PMID: 31371535 PMCID: PMC6675983 DOI: 10.1128/mra.00427-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Desulfosporosinus fructosivorans strain 63.6FT is a strictly anaerobic, spore-forming, sulfate-reducing bacterium isolated from marine sediment in the Baltic Sea. Here, we report the draft genome sequence of D. fructosivorans 63.6FT.
Collapse
Affiliation(s)
- Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Verona Vandieken
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Katharina Schreck
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
17
|
Cupit C, Lomstein BA, Kjeldsen KU. Contrasting community composition of endospores and vegetative Firmicutes in a marine sediment suggests both endogenous and exogenous sources of endospore accumulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:352-360. [PMID: 30043505 DOI: 10.1111/1758-2229.12679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Bacterial endospores are highly abundant in marine sediments, but their taxonomic identity and ecology is largely unknown. We selectively extracted DNA from endospores and vegetative cells and sequenced 16S rRNA genes to characterize the composition of the endospore and vegetative Firmicutes communities in the sediment and water column of Aarhus Bay (Denmark). The endospore community in the sediment was dominated by the families Bacillaceae, Lachnospiraceae, Clostridiaceae and Ruminoccocaceae. These families were also represented in the vegetative community in the sediment and the endospore community in the water column. OTUs of high relative abundance in the endospore community were also represented in the vegetative Firmicutes community. Other OTUs were exclusively found in the endospore communities. This suggests that endospores accumulate in marine sediments due to passive deposition from the water column and sporulation of vegetative cells in the sediment. Some OTUs were detected in the endospore community of the water column and the vegetative community the sediment indicating that endospores deposited from the water column may germinate upon burial/deposition in the sediment. We provide novel insight into the composition of endospore communities in marine sediments and highlight their role in microbial dispersal and as a seed bank in subsurface sediments.
Collapse
Affiliation(s)
- Carina Cupit
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bente Aagaard Lomstein
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper Urup Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member. mBio 2019; 10:e02189-18. [PMID: 30755506 PMCID: PMC6372793 DOI: 10.1128/mbio.02189-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive. We used environmental systems biology to genomically and transcriptionally characterize "Candidatus Desulfosporosinus infrequens," a low-abundance sulfate-reducing microorganism cosmopolitan to freshwater wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under in situ-like conditions for 50 days by Desulfosporosinus-targeted qPCR and metatranscriptomics. The Desulfosporosinus population stayed at a constant low abundance under all incubation conditions, averaging 1.2 × 106 16S rRNA gene copies per cm³ soil. In contrast, transcriptional activity of "Ca. Desulfosporosinus infrequens" increased at day 36 by 56- to 188-fold when minor amendments of acetate, propionate, lactate, or butyrate were provided with sulfate, compared to the no-substrate-control. Overall transcriptional activity was driven by expression of genes encoding ribosomal proteins, energy metabolism, and stress response but not by expression of genes encoding cell growth-associated processes. Since our results did not support growth of these highly active microorganisms in terms of biomass increase or cell division, they had to invest their sole energy for maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a rare biosphere member can contribute to a biogeochemically relevant process while remaining in a zero-growth state over a period of 50 days.IMPORTANCE The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat's biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellular activity state is driven by maintenance requirements. We show that this is true for a microbial keystone species, in particular a cosmopolitan but permanently low-abundance sulfate-reducing microorganism in wetlands that is involved in counterbalancing greenhouse gas emissions. In summary, our results provide an important step forward in understanding time-resolved activities of rare biosphere members relevant for ecosystem functions.
Collapse
Affiliation(s)
- Bela Hausmann
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claus Pelikan
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Microorganisms, Leibniz Institute DSMZ, Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Vandieken V, Marshall IPG, Niemann H, Engelen B, Cypionka H. Labilibaculum manganireducens gen. nov., sp. nov. and Labilibaculum filiforme sp. nov., Novel Bacteroidetes Isolated from Subsurface Sediments of the Baltic Sea. Front Microbiol 2018; 8:2614. [PMID: 29354105 PMCID: PMC5760507 DOI: 10.3389/fmicb.2017.02614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in deep subsurface sediments are challenged by the decrease in amount and quality of organic substrates with depth. In sediments of the Baltic Sea, they might additionally have to cope with an increase in salinity from ions that have diffused downward from the overlying water during the last 9000 years. Here, we report the isolation and characterization of four novel bacteria of the Bacteroidetes from depths of 14–52 m below seafloor (mbsf) of Baltic Sea sediments sampled during International Ocean Discovery Program (IODP) Expedition 347. Based on physiological, chemotaxonomic and genotypic characterization, we propose that the four strains represent two new species within a new genus in the family Marinifilaceae, with the proposed names Labilibaculum manganireducens gen. nov., sp. nov. (type strain 59.10-2MT) and Labilibaculum filiforme sp. nov. (type strains 59.16BT) with additional strains of this species (59.10-1M and 60.6M). The draft genomes of the two type strains had sizes of 5.2 and 5.3 Mb and reflected the major physiological capabilities. The strains showed gliding motility, were psychrotolerant, neutrophilic and halotolerant. Growth by fermentation of mono- and disaccharides as well as pyruvate, lactate and glycerol was observed. During glucose fermentation, small amounts of electron equivalents were transferred to Fe(III) by all strains, while one of the strains also reduced Mn(IV). Thereby, the four strains broaden the phylogenetic range of prokaryotes known to reduce metals to the group of Bacteroidetes. Halotolerance and metal reduction might both be beneficial for survival in deep subsurface sediments of the Baltic Sea.
Collapse
Affiliation(s)
- Verona Vandieken
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Ian P G Marshall
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Helge Niemann
- Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland.,CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, University of Tromsø, Tromsø, Norway.,Departments of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, and Utrecht University, Netherlands
| | - Bert Engelen
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heribert Cypionka
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|