1
|
Sorokin DY, Merkel AY, Kolganova TV, Bale NJ, Sinninghe Damsté JS. Natronospira bacteriovora sp. nov., and Natronospira elongata sp. nov., extremely salt-tolerant predatory proteolytic bacteria from soda lakes and proposal to classify the genus Natronospira into Natronospiraceae fam. nov., and Natronospirales ord. nov., within the class Gammaproteobacteria. Syst Appl Microbiol 2024; 47:126519. [PMID: 38759530 DOI: 10.1016/j.syapm.2024.126519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The genus Natronospira is represented by a single species of extremely salt-tolerant aerobic alkaliphilic proteolytic bacterium, isolated from hypersaline soda lakes. When cells of Gram-positive cocci were used as a substrate instead of proteins at extremely haloalkaline conditions, two new members of this genus were enriched and isolated in pure culture from the same sites. Strains AB-CW1 and AB-CW4 are obligate aerobic heterotrophic proteolytic bacteria able to feed on both live and dead cells of staphylococci and a range of proteins and peptides. Similar to the type species, N. proteinivora, the isolates are extremely salt-tolerant obligate alkaliphiles. However, N. proteinivora was unable to use bacterial cells as a substrate. Electron microscopy showed direct contact between the prey and predator cells. Functional analysis of the AB-CW1 and AB-CW4 genomes identified two sets of genes coding for extracellular enzymes potentially involved in the predation and proteolysis, respectively. The first set includes several copies of lysozyme-like GH23 peptidoglycan-lyase and murein-specific M23 [Zn]-di-peptidase enabling the cell wall degradation. The second set features multiple copies of secreted serine and metallopeptidases apparently allowing for the strong proteolytic phenotype. Phylogenomic analysis placed the isolates into the genus Natronospira as two novel species members, and furthermore indicated that this genus forms a deep-branching lineage of a new family (Natronospiraceae) and order (Natronospirales) within the class Gammaproteobacteria. On the basis of distinct phenotypic and genomic properties, strain AB-CW1T (JCM 335396 = UQM 41579) is proposed to be classified as Natronospira elongata sp. nov., and AB-CW4T (JCM 335397 = UQM 41580) as Natronospira bacteriovora sp. nov.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, TU Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana V Kolganova
- Skryabin Insitutute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, Texel, The Netherlands
| |
Collapse
|
2
|
Cisneros-Martínez AM, Rodriguez-Cruz UE, Alcaraz LD, Becerra A, Eguiarte LE, Souza V. Comparative evaluation of bioinformatic tools for virus-host prediction and their application to a highly diverse community in the Cuatro Ciénegas Basin, Mexico. PLoS One 2024; 19:e0291402. [PMID: 38300968 PMCID: PMC10833507 DOI: 10.1371/journal.pone.0291402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Due to the enormous diversity of non-culturable viruses, new viruses must be characterized using culture-independent techniques. The associated host is an important phenotypic feature that can be inferred from metagenomic viral contigs thanks to the development of several bioinformatic tools. Here, we compare the performance of recently developed virus-host prediction tools on a dataset of 1,046 virus-host pairs and then apply the best-performing tools to a metagenomic dataset derived from a highly diverse transiently hypersaline site known as the Archaean Domes (AD) within the Cuatro Ciénegas Basin, Coahuila, Mexico. Among host-dependent methods, alignment-based approaches had a precision of 66.07% and a sensitivity of 24.76%, while alignment-free methods had an average precision of 75.7% and a sensitivity of 57.5%. RaFAH, a virus-dependent alignment-based tool, had the best overall performance (F1_score = 95.7%). However, when predicting the host of AD viruses, methods based on public reference databases (such as RaFAH) showed lower inter-method agreement than host-dependent methods run against custom databases constructed from prokaryotes inhabiting AD. Methods based on custom databases also showed the greatest agreement between the source environment and the predicted host taxonomy, habitat, lifestyle, or metabolism. This highlights the value of including custom data when predicting hosts on a highly diverse metagenomic dataset, and suggests that using a combination of methods and qualitative validations related to the source environment and predicted host biology can increase the number of correct predictions. Finally, these predictions suggest that AD viruses infect halophilic archaea as well as a variety of bacteria that may be halophilic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing, or marine, which is consistent with the specific environment and the known geological and biological evolution of the Cuatro Ciénegas Basin and its microorganisms.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ulises E. Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Becerra
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
3
|
Del Duca S, Riccardi C, Vassallo A, Fontana G, Castronovo LM, Chioccioli S, Fani R. The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization. Microorganisms 2021; 9:microorganisms9071439. [PMID: 34361875 PMCID: PMC8305728 DOI: 10.3390/microorganisms9071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how his genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of his genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of his gene structures and organizations revealed different scenarios with genes organized in more or less compact—heterogeneous or homogeneous—operons, in suboperons, or in regulons. The organization of his genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of his genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the his gene structure in this superphylum.
Collapse
|
4
|
Sorokin DY, Mosier D, Zorz JK, Dong X, Strous M. Wenzhouxiangella Strain AB-CW3, a Proteolytic Bacterium From Hypersaline Soda Lakes That Preys on Cells of Gram-Positive Bacteria. Front Microbiol 2020; 11:597686. [PMID: 33281797 PMCID: PMC7691419 DOI: 10.3389/fmicb.2020.597686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3, was isolated from a system of hypersaline alkaline soda lakes in the Kulunda Steppe using cells of Staphylococcus aureus as growth substrate. AB-CW3's complete, circular genome was assembled from combined nanopore and Illumina sequencing and its proteome was determined for three different experimental conditions. AB-CW3 is an aerobic gammaproteobacterium feeding mainly on proteins and peptides. Unique among Wenzhouxiangella, it uses a flagellum for motility, fimbria for cell attachment and is capable of complete denitrification. AB-CW3 can use proteins derived from living or dead cells of Staphylococcus and other Gram-positive bacteria as the carbon and energy source. It encodes and expresses production of a novel Lantibiotic, a class of antimicrobial peptides which have so far only been found to be produced by Gram-positive bacteria. AB-CW3 likely excretes this peptide via a type I secretion system encoded upstream of the genes for production of the Lanthipeptide. Comparison of AB-CW3's genome to 18 other Wenzhouxiangella genomes from marine, hypersaline, and soda lake habitats indicated one or two transitions from marine to soda lake environments followed by a transition of W. marina back to the oceans. Only 19 genes appear to set haloalkaliphilic Wenzhouxiangella apart from their neutrophilic relatives. As strain AB-CW3 is only distantly related to other members of the genus, we propose to provisionally name it "Wenzhouxiangella alkaliphila".
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre for Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Diversity and characterization of culturable haloalkaliphilic bacteria from two distinct hypersaline lakes in northern Egypt. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00609-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Liew KJ, Bruce NC, Sani RK, Chong CS, Yaakop AS, Shamsir MS, Goh KM. Global Transcriptomic Responses of Roseithermus sacchariphilus Strain RA in Media Supplemented with Beechwood Xylan. Microorganisms 2020; 8:E976. [PMID: 32610703 PMCID: PMC7409140 DOI: 10.3390/microorganisms8070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022] Open
Abstract
The majority of the members in order Rhodothermales are underexplored prokaryotic extremophiles. Roseithermus, a new genus within Rhodothermales, was first described in 2019. Roseithermus sacchariphilus is the only species in this genus. The current report aims to evaluate the transcriptomic responses of R. sacchariphilus strain RA when cultivated on beechwood xylan. Strain RA doubled its growth in Marine Broth (MB) containing xylan compared to Marine Broth (MB) alone. Strain RA harbors 54 potential glycosyl hydrolases (GHs) that are affiliated with 30 families, including cellulases (families GH 3, 5, 9, and 44) and hemicellulases (GH 2, 10, 16, 29, 31,43, 51, 53, 67, 78, 92, 106, 113, 130, and 154). The majority of these GHs were upregulated when the cells were grown in MB containing xylan medium and enzymatic activities for xylanase, endoglucanase, β-xylosidase, and β-glucosidase were elevated. Interestingly, with the introduction of xylan, five out of six cellulolytic genes were upregulated. Furthermore, approximately 1122 genes equivalent to one-third of the total genes for strain RA were upregulated. These upregulated genes were mostly involved in transportation, chemotaxis, and membrane components synthesis.
Collapse
Affiliation(s)
- Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - Mohd Shahir Shamsir
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Johor 84600, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| |
Collapse
|
7
|
Draft Genome Sequences of Longimonas halophila KCTC 42399 and Longibacter salinarum KCTC 52045. Microbiol Resour Announc 2019; 8:8/46/e01238-19. [PMID: 31727717 PMCID: PMC6856283 DOI: 10.1128/mra.01238-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Longimonas halophila and Longibacter salinarum are type strains of underexplored genera affiliated with Salisaetaceae. Herein, we report the draft genome sequences of two strains of these bacteria, L. halophila KCTC 42399 and L. salinarum KCTC 52045, with the intent of broadening knowledge of this family. Genome annotation and gene mining revealed that both bacteria exhibit amylolytic abilities. Longimonas halophila and Longibacter salinarum are type strains of underexplored genera affiliated with Salisaetaceae. Herein, we report the draft genome sequences of two strains of these bacteria, L. halophila KCTC 42399 and L. salinarum KCTC 52045, with the intent of broadening knowledge of this family. Genome annotation and gene mining revealed that both bacteria exhibit amylolytic abilities.
Collapse
|
8
|
Park MJ, Oh JH, Yang SH, Kwon KK. Roseithermus sacchariphilus gen. nov., sp. nov. and proposal of Salisaetaceae fam. nov., representing new family in the order Rhodothermales. Int J Syst Evol Microbiol 2019; 69:1213-1219. [PMID: 30777820 DOI: 10.1099/ijsem.0.003293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium with cells that were pinkish-cream-coloured, aerobic, rod-shaped, 0.62-1.00 µm wide and 2.3-3.3 µm long, designated as strain MEBiC09517T, was isolated from Buksung-Po, a small port in Incheon, Republic of Korea. Strain MEBiC09517T had low 16S rRNA gene sequence similarity to validly reported strains; among them, Rubrivirgaprofundi SAORIC-476T displayed highest sequence similarity (89.9 %). Nevertheless, the novel strain shared a phylogenetic line with members of the genus Rhodothermus, not the genus Rubrivirga. Optimum growth conditions of strain MEBiC09517T were at 50-55 °C, pH 7 and in 2.0-4.0 % salt concentration. Strain MEBiC09517T was found to be an obligate marine bacterium that requires KCl, MgCl2 and CaCl2 as well as NaCl for growth. A phosphatidylethanolamine, a diphosphatidylglycerol, three glycolipids and four unidentified lipids were the strain's predominant polar lipid components. The fatty acid of the cell wall mainly consisted of carbons with 16 or 18 chain lengths such as C16 : 0, C18 : 0, C18 : 1 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The predominant menaquinone was MK-7. The DNA G+C content is 68.65 mol%. Strain MEBiC09517T differs from genera of the order Rhodothermales in terms of fatty acid composition, growth conditions, and range of carbon source utilization. Based on phylogenetic analysis using the strain's 16S rRNA gene sequence and results of physiological tests, strain MEBiC09517T (KCCM=43267T, JCM=32374T) is proposed as Roseithermus sacchariphilus gen. nov., sp. nov. Additionally, the novel family Salisaetaceae fam. nov. based on phylogenetic analysis and physiological characteristics is suggested.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.,Major of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji Hye Oh
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sung-Hyun Yang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Kae Kyoung Kwon
- Major of Marine Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.,Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| |
Collapse
|
9
|
Sorokin DY, Muntyan MS, Toshchakov SV, Korzhenkov A, Kublanov IV. Phenotypic and Genomic Properties of a Novel Deep-Lineage Haloalkaliphilic Member of the Phylum Balneolaeota From Soda Lakes Possessing Na +-Translocating Proteorhodopsin. Front Microbiol 2018; 9:2672. [PMID: 30483225 PMCID: PMC6243061 DOI: 10.3389/fmicb.2018.02672] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Stable development of a heterotrophic bacterial satellite with a peculiar cell morphology has been observed in several enrichment cultures of haloalkaliphilic benthic filamentous cyanobacteria from a hypersaline soda lake in Kulunda Steppe (Altai, Russia). The organism was isolated in pure culture (strain Omega) using sonicated cyanobacterial cells as substrate and it was identified as a deep phylogenetic lineage within the recently proposed phylum Balneolaeota. It is an obligately aerobic heterotroph utilizing proteins and peptides for growth. The cell morphology significantly varied from semicircles to long filaments depending on the growth conditions. The cultures are red-orange colored due to a presence of carotenoids. The isolate is an obligate alkaliphile with a pH range for growth from 8.5 to 10.5 (optimum at 9.5-10) and moderately salt-tolerant with a range from 0.3 to 3 M total Na+ (optimum at 1 M). The genome analysis of strain Omega demonstrated a presence of gene, encoding a proteorhodopsin forming a separate branch in the sodium-translocating proteorhodopsin family. Experiments with washed cells of Omega confirmed light-dependent sodium export. A possible physiological role of the sodium proteorhodopsin in strain Omega is discussed. Phylogenomic analysis demostrated that strain Omega forms an deep, independent branch of a new genus and family level within a recently established phylum Balneolaeota.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, Goh KM. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 2018; 8:376. [PMID: 30105201 PMCID: PMC6087703 DOI: 10.1007/s13205-018-1391-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
Collapse
Affiliation(s)
- Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Seng Chong Teo
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, USA
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| | - Kok-Gan Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, 212013 People’s Republic of China
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Malaysia
| |
Collapse
|
11
|
Trujillo ME, Oren A. Avoiding 'salami slicing' in publications describing new prokaryotic taxa. Int J Syst Evol Microbiol 2018; 68:977-978. [PMID: 29458506 DOI: 10.1099/ijsem.0.002634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Aharon Oren
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.,Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Proteinivorax hydrogeniformans sp. nov., an anaerobic, haloalkaliphilic bacterium fermenting proteinaceous compounds with high hydrogen production. Antonie van Leeuwenhoek 2017; 111:275-284. [DOI: 10.1007/s10482-017-0949-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|