1
|
Munson E, Carella A, Carroll KC. Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022. J Clin Microbiol 2023; 61:e0083823. [PMID: 37889007 PMCID: PMC10662342 DOI: 10.1128/jcm.00838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Although some nomenclature changes have caused consternation among clinical microbiologists, the discovery of novel taxa and improving classification of existing groups of organisms is exciting and adds to our understanding of microbial pathogenesis. In this mini-review, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2022. Henceforth, these bacteriology taxonomic summaries will appear annually. Several of the novel Gram-positive organisms have been associated with disease, namely, the Corynebacterium kroppenstedtii-like organisms Corynebacterium parakroppenstedtii sp. nov. and Corynebacterium pseudokroppenstedtii sp. nov. A newly described Streptococcus species, Streptococcus toyakuensis sp. nov., is noteworthy for exhibiting multi-drug resistance. Among the novel Gram-negative pathogens, Vibrio paracholerae sp. nov. stands out as an organism associated with diarrhea and sepsis and has probably been co-circulating with pandemic Vibrio cholerae for decades. Many new anaerobic organisms have been described in this past year largely from genetic assessments of gastrointestinal microbiome collections. With respect to revised taxa, as discussed in previous reviews, the genus Bacillus continues to undergo further division into additional genera and reassignment of existing species into them. Reassignment of two subspecies of Fusobacterium nucleatum to species designations (Fusobacterium animalis sp. nov. and Fusobacterium vincentii sp. nov.) is also noteworthy. As was typical of previous reviews, literature updates for selected clinically relevant organisms discovered between 2017 and 2021 have been included.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Munson E, Lawhon SD, Burbick CR, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Domestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0028122. [PMID: 36533907 PMCID: PMC9945509 DOI: 10.1128/jcm.00281-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Novel bacterial taxonomy and nomenclature revisions can have significant impacts on clinical practice, disease epidemiology, and veterinary microbiology laboratory operations. Expansion of research on the microbiota of humans, animals, and insects has significant potential impacts on the taxonomy of organisms of clinical interest. Implications of taxonomic changes may be especially important when considering zoonotic diseases. Here, we address novel taxonomy and nomenclature revisions of veterinary significance. Noteworthy discussion centers around descriptions of novel mastitis pathogens in Streptococcaceae, Staphylococcaceae, and Actinomycetaceae; bovine reproductive tract pathogens in Corynebacteriaceae; novel members of Mannheimia spp., Leptospira spp., and Mycobacterium spp.; the transfer of Ochrobactrum spp. to Brucella spp.; and revisions to the genus Mycoplasma.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Burbick CR, Munson E, Lawhon SD, Zapp A, Villaflor M, Thelen E. An Update on Novel Taxa and Revised Taxonomic Status of Bacteria (Including Members of the Phylum Planctomycetota) Isolated from Aquatic Host Species Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142622. [PMID: 36719221 PMCID: PMC9945501 DOI: 10.1128/jcm.01426-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Increased interest in farmed aquatic species, aquatic conservation measures, and microbial metabolic end-product utilization have translated into a need for awareness and recognition of novel microbial species and revisions to bacterial taxonomy. Because this need has largely been unmet, through a 4-year literature review, we present lists of novel and revised bacterial species (including members of the phylum Planctomycetota) derived from aquatic hosts that can serve as a baseline for future biennial summaries of taxonomic revisions in this field. Most new and revised taxa were noted within oxidase-positive and/or nonglucose fermentative Gram-negative bacilli, including members of the Tenacibaculum, Flavobacterium, and Vibrio genera. Valid and effectively published novel members of the Streptococcus, Erysipelothrix, and Photobacterium genera are additionally described from disease pathogenesis perspectives.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM, van Breda SGJ, Marsh PD, Mira A. The Importance of Nitrate Reduction for Oral Health. J Dent Res 2022; 101:887-897. [PMID: 35196931 DOI: 10.1177/00220345221080982] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary glands concentrate plasma nitrate into saliva, leading to high nitrate concentrations that can reach the millimolar range after a nitrate-rich vegetable meal. Whereas human cells cannot reduce nitrate to nitrite effectively, certain oral bacteria can. This leads to an increase in systemic nitrite that can improve conditions such as hypertension and diabetes through nitric oxide availability. Apart from systemic benefits, it has been proposed that microbial nitrate reduction can also promote oral health. In this review, we discuss evidence associating dietary nitrate with oral health. Oral bacteria can reduce nitrite to nitric oxide, a free radical with antimicrobial properties capable of inhibiting sensitive species such as anaerobes involved in periodontal diseases. Nitrate has also been shown to increase resilience against salivary acidification in vivo and in vitro, thus preventing caries development. One potential mechanism is proton consumption during denitrification and/or bacterial reduction of nitrite to ammonium. Additionally, lactic acid (organic acid involved in oral acidification) and hydrogen sulfide (volatile compound involved in halitosis) can act as electron donors for these processes. The nitrate-reducing bacteria Rothia and Neisseria are consistently found at higher levels in individuals free of oral disease (vs. individuals with caries, periodontitis, and/or halitosis) and increase when nitrate is consumed in clinical studies. Preliminary in vitro and clinical evidence show that bacteria normally associated with disease, such as Veillonella (caries) and Prevotella (periodontal diseases and halitosis), decrease in the presence of nitrate. We propose nitrate as an ecologic factor stimulating eubiosis (i.e., an increase in health-associated species and functions). Finally, we discuss the preventive and therapeutic potential, as well as safety issues, related to the use of nitrate. In vivo evidence is limited; therefore, robust clinical studies are required to confirm the potential benefits of nitrate reduction on oral health.
Collapse
Affiliation(s)
- B T Rosier
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain
| | - N Takahashi
- Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - E Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - B P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - R M MartÍnez-Espinosa
- Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - S G J van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - A Mira
- Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.,CIBER Institute of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
6
|
Chiou TY, Suda W, Oshima K, Hattori M, Matsuzaki C, Yamamoto K, Takahashi T. Lentilactobacillus kosonis sp. nov., isolated from kôso, a Japanese sugar-vegetable fermented beverage. Int J Syst Evol Microbiol 2021; 71. [PMID: 34779759 DOI: 10.1099/ijsem.0.005128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel lactic acid-producing, Gram-stain-positive, catalase-negative and rod-shaped strain, designated as strain C06_No.73T, was isolated from a traditional Japanese fermented beverage called kôso. According to the results of phylogenetic analysis based on 16S rRNA gene sequences, strain C06_No.73T belongs to the genus Lentilactobacillus. The closest type strain was Lentilactobacillus curieae CCTCC M 2011381T, with a sequence identity of 98.1 %. The identity values with other strains were all below 97 %. The isolate propagated under the conditions of 18-39 °C (optimum, 27 °C for 48 h incubation) and pH 4.0-7.0 (optimum, pH 6.5). The G+C content of its genomic DNA was determined to be 37.9 mol%. The main fatty acids were C16 : 0, C18 : 1 ω7c, C18 : 1 ω9c and C19 : 0 cyclopropane 11,12. The major polar lipid was identified as phosphatidylglycerol. No isoprenoid quinone was detected. The predominant cell-wall amino acids were lysine, alanine, glutamic acid and aspartic acid. Neither meso-diaminopimelic acid nor ornithine were detected. On the basis of this polyphasic taxonomic study, the isolate is concluded to represent a novel species, for which the name Lentilactobacillus kosonis sp. nov. is proposed. The type strain is C06_No.73T (=NBRC 111893T=BCRC 81282T).
Collapse
Affiliation(s)
- Tai-Ying Chiou
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences,1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences,1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Sakaedani 930, Wakayama, Wakayama, Japan
| | - Tomoya Takahashi
- ARSOA Research & Development Center, ARSOA Keioh Group Corporation, 2961 Kobuchisawa-cho, Hokuto, Yamanashi, Japan
| |
Collapse
|
7
|
Chanadech S, Ruen-Ngam D, Intaraudom C, Pittayakhajonwut P, Chongruchiroj S, Pratuangdejkul J, Thawai C. Isolation of manumycin-type derivatives and genome characterization of a marine Streptomyces sp. C1-2. Res Microbiol 2021; 172:103812. [PMID: 33497762 DOI: 10.1016/j.resmic.2021.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
A marine actinomycete strain C1-2 was taxonomically characterized as the genus Streptomyces, based on whole-genome sequence analysis. The highest average nucleotide identity (ANI) value (98.96%) and digital DNA-DNA hybridization (DDH) value (90.4%) were observed between Streptomyces sp. C1-2 and Streptomyces griseoaurantiacus. Thus, Streptomyces sp. C1-2 could be identified as S. griseoaurantiacus. Genome analysis revealed that Streptomyces sp. C1-2 contained 22 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 54% have low similarities with known BGCs. The chemical investigation led to the isolation of three new manumycin-type derivatives and two known analog antibiotics named SW-B and cornifronin B. All compounds showed antioxidant activity with the half-maximal inhibitory concentration (IC50) values in a range of 50.82 ± 0.8-112.04 ± 1.0 μg/mL with no cytotoxicity against Vero cells. This is the first report of the antioxidant property of manumycin-type derivatives. Moreover, two known compounds exhibited antifungal activity against Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Magnaporthe grisea, with the minimum inhibitory concentration (MIC) values in a range of 125-500 μg/mL.
Collapse
Affiliation(s)
- Sakkarn Chanadech
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Ruen-Ngam
- Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Jaturong Pratuangdejkul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Phayathai, Bangkok 10400, Thailand
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Actinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
8
|
Munson E, Carroll KC. Summary of Novel Bacterial Isolates Derived from Human Clinical Specimens and Nomenclature Revisions Published in 2018 and 2019. J Clin Microbiol 2021; 59:e01309-20. [PMID: 32967902 PMCID: PMC8111135 DOI: 10.1128/jcm.01309-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of novel prokaryotic taxon discovery and nomenclature revisions is of importance to clinical microbiology laboratory practice, infectious disease epidemiology, and studies of microbial pathogenesis. Relative to bacterial isolates derived from human clinical specimens, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2018 and 2019. Included are several changes pertinent to former designations of or within Propionibacterium spp., Corynebacterium spp., Clostridium spp., Mycoplasma spp., Methylobacterium spp., and Enterobacteriaceae Future efforts to ascertain clinical relevance for many of these changes may be augmented by a document development committee that has been appointed by the Clinical and Laboratory Standards Institute.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Li TT, Liu DD, Fu ML, Gu CT. Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later heterotypic synonym of Lactobacillus micheneri McFrederick et al. 2018, elevation of Lactobacillus plantarum subsp. argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee ( Apis mellifera). Int J Syst Evol Microbiol 2020; 70:3123-3133. [PMID: 32250238 DOI: 10.1099/ijsem.0.004141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lactobacillus kosoi Chiou et al. 2018 and Lactobacillus micheneri McFrederick et al. 2018 are closely related, and they share 100 % 16S rRNA gene sequence similarity, 99.6 % pheS gene sequence similarity, 100 % rpoA gene sequence similarity, 97.3 % average nucleotide identity (ANI) value and 76.6 % in silico DNA-DNA hybridization (isDDH) value, indicating that they represent the same species. Fatty acid methyl esters (FAME) analysis and phenotypic characterization also indicated that L. kosoi and L. micheneri are very similar. We propose L. kosoi Chiou et al. 2018 as a later heterotypic synonym of L. micheneri McFrederick et al. 2018. The taxonomic position of Lactobacillus plantarum subsp. argentoratensis in the L. plantarum group was re-examined using a polyphasic approach, including sequence analyses of 16S rRNA, pheS, rpoA and recA genes, average nucleotide identity analysis, in silico DNA-DNA hybridization, fatty acid methyl ester analysis and phenotypic characterization. Results of 16S rRNA gene sequence analysis indicated that L. plantarum subsp. argentoratensis was closely related to L. plantarum subsp. plantarum, L. pentosus and L. paraplantarum in the L. plantarum group, sharing 99.6-99.7 % 16S rRNA gene sequence similarities. Results of pheS, rpoA and recA gene sequence analyses indicated that L. plantarum subsp. argentoratensis was most closely related to L. plantarum subsp. plantarum, having 91.8 % pheS gene sequence similarity, 98.9 % rpoA gene sequence similarity and 93.1 % recA gene sequence similarity. L. plantarum subsp. argentoratensis DSM 16365T shared 95.6 % ANI value and 62.9 % isDDH value with L. plantarum subsp. plantarum ATCC 14917T. The low isDDH value confirmed that L. plantarum subsp. argentoratensis and L. plantarum subsp. plantarum represent two different species, rather than two different subspecies in the L. plantarum group. On the basis of the data from polyphasic characterization obtained in the present study and in previous studies, L. plantarum subsp. argentoratensis is elevated to the species level and represents a novel species of the genus Lactobacillus, for which the name Lactobacillus argentoratensis sp. nov. is proposed and the type strain is DKO 22T (=CIP 108320T=DSM 16365T=JCM 16169T). Two novel Gram-stain-positive bacterial strains, designated 1206-1T and F027-1-2, were isolated from traditional pickle in Heilongjiang Province, PR China, and from the intestinal tract of a honey bee (Apis mellifera) in Hubei Province, PR China, respectively. The two bacteria were characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, fatty acid methyl ester analysis, average nucleotide identity analysis, in silico DNA-DNA hybridization analysis and an analysis of phenotypic features. The results of 16S rRNA gene sequence analysis indicated that strains 1206-1T and F027-1-2 were distantly related to Lactobacillus sharpeae, Lactobacillus hulanensis, Lactobacillus songhuajiangensis, Lactobacillus pantheris, Lactobacillus thailandensis, Lactobacillus camelliae, Lactobacillus jixianensis, Lactobacillus nasuensis, Lactobacillus baoqingensis, Lactobacillus manihotivorans and Lactobacillus porcinae. Strain 1206-1T exhibited 94.2-96.4 % 16S rRNA gene sequence similarities, 69.5-83.3 % pheS gene sequence similarities and 73.1-90.3 % rpoA gene sequence similarities to type strains of phylogenetically related species. ANI and isDDH values between strain 1206-1T and the type strains of phylogenetically related species were 52.7-73.7 % and 21.1-30.1 %, respectively. On the basis of the data obtained in the present study, a novel species, Lactobacillus zhaodongensis sp. nov. is proposed and the type strain is 1206-1T (=CCM 8981T=CCTCC AB 2019200T=LMG 31620T).
Collapse
Affiliation(s)
- Ting Ting Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Dan Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Mei Ling Fu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun Tao Gu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
10
|
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782-2858. [PMID: 32293557 DOI: 10.1099/ijsem.0.004107] [Citation(s) in RCA: 1619] [Impact Index Per Article: 323.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
Collapse
Affiliation(s)
- Jinshui Zheng
- Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, PR China
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elisa Salvetti
- Dept. of Biotechnology, University of Verona, Verona, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | - Hugh M B Harris
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Paola Mattarelli
- University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy
| | - Paul W O'Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Koichi Watanabe
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, Hsinchu, Taiwan, ROC.,National Taiwan University, Dept. of Animal Science and Technology, Taipei, Taiwan, ROC
| | - Sander Wuyts
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | - Michael G Gänzle
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, PR China.,Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Wang H, Sun T, Song W, Guo X, Cao P, Xu X, Shen Y, Zhao J. Taxonomic Characterization and Secondary Metabolite Analysis of NEAU-wh3-1: An Embleya Strain with Antitumor and Antibacterial Activity. Microorganisms 2020; 8:E441. [PMID: 32244993 PMCID: PMC7143961 DOI: 10.3390/microorganisms8030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/29/2023] Open
Abstract
Cancer is a serious threat to human health. With the increasing resistance to known drugs, it is still urgent to find new drugs or pro-drugs with anti-tumor effects. Natural products produced by microorganisms have played an important role in the history of drug discovery, particularly in the anticancer and anti-infective areas. The plant rhizosphere ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science, especially Streptomyces. We screened Streptomyces-like strains from the rhizosphere soil of wheat (Triticum aestivum L.) in Hebei province, China, and thirty-nine strains were obtained. Among them, the extracts of 14 isolates inhibited the growth of colon tumor cell line HCT-116. Strain NEAU-wh-3-1 exhibited better inhibitory activity, and its active ingredients were further studied. Then, 16S rRNA gene sequence similarity studies showed that strain NEAU-wh3-1 with high sequence similarities to Embleya scabrispora DSM 41855T (99.65%), Embleya hyalina MB891-A1T (99.45%), and Streptomyces lasii 5H-CA11T (98.62%). Moreover, multilocus sequence analysis based on the five other house-keeping genes (atpD, gyrB, rpoB, recA, and trpB) and polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological, and physiological characterization indicated that the isolate should be assigned to the genus Embleya and was different from its closely related strains, therefore, it is proposed that strain NEAU-wh3-1 may be classified as representatives of a novel species of the genus Embleya. Furthermore, active substances in the fermentation broth of strain NEAU-wh-3-1 were isolated by bioassay-guided analysis and identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analyses. Consequently, one new Zincophorin analogue together with seven known compounds was detected. The new compound showed highest antitumor activity against three human cell lines with the 50% inhibition (IC50) values of 8.8-11.6 μg/mL and good antibacterial activity against four pathogenic bacteria, the other known compounds also exhibit certain biological activity.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Tianyu Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| | - Yue Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
- College of Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (H.W.); (T.S.); (W.S.); (X.G.); (P.C.); (X.X.)
| |
Collapse
|
12
|
Zhou X, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Comparative analysis of Lactobacillus gasseri from Chinese subjects reveals a new species-level taxa. BMC Genomics 2020; 21:119. [PMID: 32013858 PMCID: PMC6998098 DOI: 10.1186/s12864-020-6527-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lactobacillus gasseri as a probiotic has history of safe consumption is prevalent in infants and adults gut microbiota to maintain gut homeostasis. RESULTS In this study, to explore the genomic diversity and mine potential probiotic characteristics of L. gasseri, 92 strains of L. gasseri were isolated from Chinese human feces and identified based on 16 s rDNA sequencing, after draft genomes sequencing, further average nucleotide identity (ANI) value and phylogenetic analysis reclassified them as L. paragasseri (n = 79) and L. gasseri (n = 13), respectively. Their pan/core-genomes were determined, revealing that L. paragasseri had an open pan-genome. Comparative analysis was carried out to identify genetic features, and the results indicated that 39 strains of L. paragasseri harboured Type II-A CRISPR-Cas system while 12 strains of L. gasseri contained Type I-E and II-A CRISPR-Cas systems. Bacteriocin operons and the number of carbohydrate-active enzymes were significantly different between the two species. CONCLUSIONS This is the first time to study pan/core-genome of L. gasseri and L. paragasseri, and compare their genetic diversity, and all the results provided better understating on genetics of the two species.
Collapse
Affiliation(s)
- Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China. .,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
13
|
Deptula P, Loivamaa I, Smolander OP, Laine P, Roberts RJ, Piironen V, Paulin L, Savijoki K, Auvinen P, Varmanen P. Red-Brown Pigmentation of Acidipropionibacterium jensenii Is Tied to Haemolytic Activity and cyl-Like Gene Cluster. Microorganisms 2019; 7:microorganisms7110512. [PMID: 31671651 PMCID: PMC6920887 DOI: 10.3390/microorganisms7110512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023] Open
Abstract
The novel Acidipropionibacterium genus encompasses species of industrial importance but also those associated with food spoilage. In particular, Acidipropionibacterium acidipropionici, Acidipropionibacterium thoenii, and Acidipropionibacterium jensenii play an important role in food fermentation, as biopreservatives, or as potential probiotics. Notably, A. jensenii and A. thoenii can cause brown spot defects in Swiss-type cheeses, which have been tied to the rhamnolipid pigment granadaene. In the pathogenic bacterium Streptococcus agalactiae, production of granadaene depends on the presence of a cyl gene cluster, an important virulence factor linked with haemolytic activity. Here, we show that the production of granadaene in pigmented Acidipropionibacterium, including A. jensenii, A. thoenii, and Acidipropionibacterium virtanenii, is tied to haemolytic activity and the presence of a cyl-like gene cluster. Furthermore, we propose a PCR-based test, which allows pinpointing acidipropionibacteria with the cyl-like gene cluster. Finally, we present the first two whole genome sequence analyses of the A. jensenii strains as well as testing phenotypic characteristics important for industrial applications. In conclusion, the present study sheds light on potential risks associated with the presence of pigmented Acidipropionibacterium strains in food fermentation. In addition, the results presented here provide ground for development of a quick and simple diagnostic test instrumental in avoiding potential negative effects of Acidipropionibacterium strains with haemolytic activity on food quality.
Collapse
Affiliation(s)
- Paulina Deptula
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
- Department of Food Sciences, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | - Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Pia Laine
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Kirsi Savijoki
- Division of Pharmaceutical Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Tindall BJ. Arachnia propionica (Buchanan and Pine 1962) Pine and Georg 1969 (Approved Lists 1980), Propionibacterium propionicum corrig. (Buchanan and Pine 1962) Charfreitag et al. 1988 and Pseudopropionibacterium propionicum (Buchanan and Pine 1962) Scholz and Kilian 2016 and the nomenclatural consequences of changes in the taxonomy of the genus Propionibacterium. Int J Syst Evol Microbiol 2019; 69:2612-2615. [DOI: 10.1099/ijsem.0.003442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- B. J. Tindall
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B 38124 Braunschweig, Germany
| |
Collapse
|