1
|
Guo XY, Wu KC, Dong CZ, Zhang QM, Qiu LH. Paraburkholderia flagellata sp. nov. and Paraburkholderia adhaesiva sp. nov., two novel species isolated from forest soil in Dinghushan Biosphere Reserve in Guangdong, China. Antonie Van Leeuwenhoek 2023; 116:1023-1035. [PMID: 37592017 DOI: 10.1007/s10482-023-01867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Two Gram-stain-negative, aerobic, motile and short rod strains, designated 4D117T and ZD32-2T, were isolated from the forest soils. Strains 4D117T and ZD32-2T grew optimally at pH 4.0-6.5, 20-33 °C and pH 4.5-7.0, 33 °C, respectively, and both at 0.5% (w/v) NaCl concentration. Strains 4D117T and ZD32-2T shared the highest 16S rRNA gene sequence similarity with P. acidiphila 7Q-K02T (99.1%) and P. ferrariae NBRC 106233T (98.7%), respectively. The genome size and G + C contents of strains 4D117T and ZD32-2T were 9,002,095 bp, 62.9% and 6,974,420 bp, 61.7%, respectively. The dDDH and ANI values between strains 4D117T, ZD32-2T and closely related Paraburkholderia species were in the ranges of 21.9-51.6% and 82.9-94.4%, and 81.7% and 25.4% between themself, respectively. Functional genomic analysis showed both strains were capable of degrading contaminants, such as benzoate, anthranilic acid and catechol for 4D117T, and benzene and catechol for ZD32-2T, indicating that they may have potentials for soil pollutant treatment. The main polar lipids of strains 4D117T and ZD32-2T were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain 4D117T contained C16:0, C19:0 cyclo ω8c and C18:1 ω7c and/or C18:1 ω6c, while strain ZD32-2T had C16:0 and C17:0 cyclo as their major cellular fatty acids (> 10%). Based on the phenotypic characters and genomic data, strains 4D117T and ZD32-2T represent two novel species of genus Paraburkholderia, for which the names Paraburkholderia flagellata sp. nov. (type strain 4D117T = GDMCC 1.2617T = NBRC 115278T) and Paraburkholderia adhaesiva sp. nov. (type strain ZD32-2T = GDMCC 1.2622T = NBRC 115282T) are proposed.
Collapse
Affiliation(s)
- Xiu-Yin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Cheng Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Cheng-Zhi Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, Covarrubias SA, Vera-Núñez JA, Délano-Frier JP. Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens. Microorganisms 2021; 9:microorganisms9102061. [PMID: 34683382 PMCID: PMC8538949 DOI: 10.3390/microorganisms9102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.
Collapse
Affiliation(s)
- Guadalupe C. Barrera-Galicia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Héctor A. Peniche-Pavía
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Sergio A. Covarrubias
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - José A. Vera-Núñez
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
- Correspondence: ; Tel.: +52-462-623-9600
| |
Collapse
|
3
|
Gao ZH, Zhang QM, Lv YY, Wang YQ, Zhao BN, Qiu LH. Paraburkholderia acidiphila sp. nov., Paraburkholderia acidisoli sp. nov. and Burkholderia guangdongensis sp. nov., isolated from forest soil, and reclassification of Burkholderia ultramafica as Paraburkholderia ultramafica comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 33555242 DOI: 10.1099/ijsem.0.004690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-stain-negative, aerobic, motile and rod-shaped bacterial strains, 7Q-K02T, DHF22T and DHOM02T, were isolated from forest soil sampled at Dinghushan Biosphere Reserve, Guangdong Province, China. Strains 7Q-K02T, DHF22T and DHOM02T grew at 4-37, 4-42 and 12-37 °C, pH 3.0-8.5, 3.5-8.5 and 5.0-8.0, and in the presence of 0-3.0, 0-3.5 and 0-2.5 % (w/v) NaCl; with optima at 28-33, 28 and 28-33 °C, pH 3.5-6.5, 4.0-5.5 and 6.5-7.0, and 0-1.5, 0-1.5 and 0.5-1.5 % (w/v) NaCl, respectively. Strains 7Q-K02T and DHF22T have the highest 16S rRNA gene sequence similarities of 99.0 and 98.0 % to Paraburkholderia sacchari LMG 19450T and 97.7 % between themselves, while strain DHOM02T shares the highest similarity of 98.4 % to 'Burkholderia rinojensis' A396T followed by 98.3 % to Burkholderia plantarii ATCC 43733T. In the 16S rRNA gene sequence phylogram, strain 7Q-K02T formed a sister branch with Paraburkholderia sacchari, Paraburkholderia oxyphila and Paraburkholderia paradisi, and strain DHF22T was separated from all other species within the genus Paraburkholderia, while strain DHOM02T formed a separated clade with members of the genus Burkholderia. The DNA G+C contents of strains 7Q-K02T, DHF22T and DHOM02T wwe 64.3, 65.4 and 66.6 %, respectively. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of strains 7Q-K02T, DHF22T and closely related Paraburkholderia strains were in the ranges of 25.5-43.7 % and 81.5-91.3 %, respectively. While dDDH and ANI values between strain DHOM02T and Burkholderia strains with genome sequence data were in the ranges of 22.4-31.0 % and 78.2-86.1 %, respectively. These three strains have the same major respiratory quinone: ubiquinone-8. Strains 7Q-K02T, DHF22T and DHOM02T have C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) as their major fatty acid compositions. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of phenotypic, phylogenetic, genomic analyses and chemotaxonomic data, strains 7Q-K02T and DHF22T represent two novel species of the genus Paraburkholderia, for which the names Paraburkholderia acidiphila sp. nov. (type strain 7Q-K02T=CGMCC 1.15433T=KCTC 62472T=LMG 29209T) and Paraburkholderia acidisoli sp. nov. (type strain DHF22T=GDMCC 1.1448T=LMG 30262T) are proposed, while strain DHOM02T represents a novel species in the genus Burkholderia, for which the name Burkholderia guangdongensis sp. nov. (type strain DHOM02T=KCTC 42625T=LMG 28843T) is proposed. We also propose to transfer Burkholderia ultramafica to the genus Paraburkholderia as Paraburkholderia ultramafica comb. nov. based mainly on the results of phylogenomic analysis.
Collapse
Affiliation(s)
- Zeng-Hong Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying-Ying Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - You-Qi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Bing-Nan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
4
|
de Lajudie P, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019. Int J Syst Evol Microbiol 2020; 70:3563-3571. [DOI: 10.1099/ijsem.0.004157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Minutes of the closed meeting of the ICSP Subcommittee on the Taxonomy of Rhizobia and Agrobacteria held by videoconference on 17 July 2019, and list of recent species.
Collapse
|
5
|
Trinh NH, Kim J. Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. Int J Syst Evol Microbiol 2020; 70:2509-2514. [PMID: 32101513 DOI: 10.1099/ijsem.0.004063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A Gram-stain-negative, aerobic and short rod-shaped bacterial strain, designated LD6T, was isolated from a forest soil sample in Suwon, Gyeonggi-do, Republic of Korea. Strain LD6T grew at 10-37 °C (optimal temperature, 28 °C), and tolerated pH 8.0 and 2 % (w/v) NaCl. Strain LD6T was related most closely to members of the genus Paraburkholderia, namely Paraburkholderia azotifigens NF2-5-3T (98.2 % 16S rRNA gene sequence similarity), P. megapolitana A3T (97.9 %), P. ginsengiterrae DCY85T (97.9 %) and P. caribensis MWAP64T (97.7 %). The strain grew well on R2A agar, tryptone soya agar, Mueller-Hinton agar and nutrient agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and glycolipid. The major respiratory quinone was ubiquinone 8 (Q-8). The main fatty acids were C17 : 0 cyclo, C16 : 0, C16 : 0 3-OH, C19 : 0 cyclo ω8c and C12 : 0. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.4 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain LD6T and its reference type strains ranged from 80.3 to 82.4%, and from 23.7 to 33.7%, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain LD6T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Paraburkholderia. Therefore, strain LD6T is considered to represent a novel species, for which the name Paraburkholderia flava sp. nov. is proposed. The type strain is LD6T (=KACC 21387T=JCM 33640T).
Collapse
Affiliation(s)
- Ngoc Hoang Trinh
- Thai Nguyen University of Sciences, Thai Nguyen City, Thai Nguyen Province 250000, Vietnam.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|