1
|
Chávez-Tinoco M, García-Ortega LF, Mancera E. Genetic modification of Candida maltosa, a non-pathogenic CTG species, reveals EFG1 function. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001447. [PMID: 38456839 PMCID: PMC10999747 DOI: 10.1099/mic.0.001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.
Collapse
Affiliation(s)
- Marco Chávez-Tinoco
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Luis F. García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
2
|
Singh S, Arya SK, Krishania M. Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:31. [PMID: 38402217 PMCID: PMC10894501 DOI: 10.1186/s13068-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
The present work models the fermentation process parameters of the newly isolated, Meyerozyma caribbica CP02 for enhanced xylitol production and its fermentability study on rice straw hydrolysate. The study examined the impact of each of the process variables by one variable at a time optimization followed by statistical validation. Temperature of 32 °C, pH of 3.5, agitation of 200 rpm, 1.5% (v/v) inoculum, 80 gL-1 initial xylose was optimized. Subsequently, a sequential two-stage agitation approach was adopted for fermentation. At these optimized conditions, xylitol yield of 0.77 gg-1 and 0.64 gg-1 was achieved using media containing commercial and rice straw derived xylose, respectively. For scale up, in 3L batch bioreactor, the highest xylitol yield (0.63 gg-1) was attained at 72 h with rice straw hydrolysate media containing initial xylose (59.48 ± 0.82 gL-1) along with inhibitors (1.55 ± 0.10 gL-1 aliphatic acids, 0.0.048 ± 0.11 gL-1 furans, 0.64 ± 0.23 gL-1 total phenols). The results imply that even under circumstances characterized by an acidic pH and elevated initial xylose level, M. caribbica CP02, as an isolate, displays robustness and shows favorable fermentability of rice straw hydrolysate. Therefore, isolate CP02 has potential to be used in bio-refineries for high yield xylitol production with minimal hydrolysate processing requirements.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India.
| |
Collapse
|
3
|
Rosa CA, Lachance MA, Limtong S, Santos ARO, Landell MF, Gombert AK, Morais PB, Sampaio JP, Gonçalves C, Gonçalves P, Góes-Neto A, Santa-Brígida R, Martins MB, Janzen DH, Hallwachs W. Yeasts from tropical forests: Biodiversity, ecological interactions, and as sources of bioinnovation. Yeast 2023; 40:511-539. [PMID: 37921426 DOI: 10.1002/yea.3903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.
Collapse
Affiliation(s)
- Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University, Kasetsart University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Melissa F Landell
- Setor de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Andreas K Gombert
- Department of Engineering and Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Paula B Morais
- Laboratório de Microbiologia Ambiental e Biotecnologia, Campus de Palmas, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil
| | - José P Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Aristóteles Góes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Abstract
AbstractYeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of Malassezia yeasts in marine habitats.
Collapse
|
5
|
Shi CF, Zhang KH, Chai CY, Yan ZL, Hui FL. Diversity of the genus Sugiyamaella and description of two new species from rotting wood in China. MycoKeys 2021; 77:27-39. [PMID: 33519267 PMCID: PMC7815693 DOI: 10.3897/mycokeys.77.60077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/12/2022] Open
Abstract
Species of the genus Sugiyamaella (Trichomonascaceae, Saccharomycetales), found in rotting wood in China, were investigated using morphology and the molecular phylogeny of a combined ITS and nrLSU dataset. Nine taxa were collected in China: two were new species (viz. Sugiyamaellachuxiongsp. nov. and S.yunanensissp. nov.) and seven were known species, S.americana, S.ayubii, S.novakii, S.paludigena, S.valenteae, S.valdiviana and S.xiaguanensis. The two new species are illustrated and their morphology and phylogenetic relationships with other Sugiyamaella species are discussed. Our results indicate a potentially great diversity of Sugiyamaella spp. inhabiting rotting wood in China just waiting to be discovered.
Collapse
Affiliation(s)
- Cheng-Feng Shi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Kai-Hong Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Chun-Yue Chai
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Zhen-Li Yan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co., Ltd., Nanyang 473000, China Henan Tianguan Enterprise Group Co., Ltd. Nanyang China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| |
Collapse
|
6
|
Lv SL, Chai CY, Wang Y, Yan ZL, Hui FL. Five new additions to the genus Spathaspora (Saccharomycetales, Debaryomycetaceae) from southwest China. MycoKeys 2020; 75:31-49. [PMID: 33223920 PMCID: PMC7669824 DOI: 10.3897/mycokeys.75.57192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/25/2020] [Indexed: 12/28/2022] Open
Abstract
Spathaspora is an important genus of d-xylose-fermenting yeasts that are poorly studied in China. During recent yeast collections in Yunnan Province in China, 13 isolates of Spathaspora were obtained from rotting wood and all represent undescribed taxa. Based on morphological and phylogenetic analyses (ITS and nuc 28S), five new species are proposed: Spathaspora elongata, Sp. mengyangensis, Sp. jiuxiensis, Sp. parajiuxiensis and Sp. rosae. Our results indicate a high species diversity of Spathaspora waiting to be discovered in rotting wood from tropical and subtropical southwest China. In addition, the two Candida species, C. jeffriesii and C. materiae, which are members of the Spathaspora clade based on phylogeny, are transferred to Spathaspora as new combinations.
Collapse
Affiliation(s)
- Shi-Long Lv
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Chun-Yue Chai
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Yun Wang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| | - Zhen-Li Yan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Co. Ltd., Nanyang 473000, China Henan Tianguan Enterprise Group Nanyang China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China Nanyang Normal University Nanyang China
| |
Collapse
|
7
|
Fungal Planet description sheets: 1042-1111. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:301-459. [PMID: 33116344 PMCID: PMC7567971 DOI: 10.3767/persoonia.2020.44.11] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|