1
|
Liu C, Zhu A, Hou J, Wang L, Zhang R, Li J, Guo Y, Chu Y. Nonomuraea sediminis sp. nov., a novel actinobacterium with antimicrobial activity, isolated from sediment of Dianchi Lake. Arch Microbiol 2023; 205:91. [PMID: 36781487 DOI: 10.1007/s00203-023-03427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
A novel actinobacterium with antimicrobial activity, designated strain H16431T, was isolated from a sediment sample collected from Dianchi Lake, Yunnan Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain H16431T was most closely related to Nonomuraea rhizosphaerae CGMCC 4.7431T and Nonomuraea guangzhouensis CGMCC 4.7101T (98.1% similarity), but formed a monophyletic clade with Nonomuraea ceibae KCTC 39826T (98.0% similarity). Phylogenomic analysis based on whole-genome sequence showed that strain H16431T formed a separate clade within the genus Nonomuraea. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between strain H16431T and its closely related Nonomuraea species were 80.0-81.5%, 71.2-74.6%, and 23.2-25.0%, respectively, which were significantly lower than the widely accepted species-defined threshold. The DNA G + C content was 70.2% based on the whole-genome sequence. The menaquinones were identified as MK-9(H4), MK-9(H6), and MK-9(H2). The major fatty acids were iso-C16:0, 10 methyl-C17:0, and iso-C16:0 2OH. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, and phosphatidylinositol. These chemotaxonomic characteristics were corresponded to those of the genus Nonomuraea. On the basis of the taxonomic evidence, strain H16431T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea sediminis sp. nov. is proposed. The type strain is H16431T (=JCM 34852T=CICC 25119T).
Collapse
Affiliation(s)
- Chaolan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Ao Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jiabei Hou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Limei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ruilin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Jianghua Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Yidong Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Huang W, Ning W, Song B, Osman G, Zhu J, Wang W. Radiobacillus kanasensis sp. nov., a halotolerant bacterium isolated from woodland soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 36821360 DOI: 10.1099/ijsem.0.005718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A novel Gram-positive, aerobic, rod-shaped, non-motile, endospore-forming salt-tolerant bacterium strain (80T), was isolated from woodland soil collected near Kanas lake in the Altay region of Xinjiang, PR China. The strain grew at 15-45 °C, pH6.0-9.0 and with 0-14 % (w/v) NaCl. The complete genome size of the novel strain was 4 031 766 bp including a circle chromosome and a circle plasmid. The genomic DNA G+C content was 38.99 mol %. Phylogenetic analysis based on 16S rRNA gene sequence and genome showed that strain 80T has the highest similarity to Radiobacillus deserti TKL69T. However, the novel strain showed an average nucleotide identity value of 78.65 % (lower than 95 %) and a digital DNA-DNA hybridization value of 22.30 % with R. deserti TKL69T based on the genome sequences. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17:0 and C16 : 1 ω7c alcohol. The only respiratory quinone was MK-7. The cell wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminophospholipid and two unidentified glycolipids were identified as the major polar lipids. The phylogenetic, phenotypic and chemotaxonomic analyses showed that strain 80T represents a novel species of the genus Radiobacillus and the name Radiobacillus kanasensis sp. nov. is proposed. The type strain is 80T (=GDMCC 1.2844T=JCM 35077T).
Collapse
Affiliation(s)
- Lijuan Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wei Huang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wang Ning
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Bo Song
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Ghenijan Osman
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Jing Zhu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wei Wang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| |
Collapse
|
3
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov., Saccharopolyspora terrae sp. nov. and their biotechnological potential revealed by genome analysis. Syst Appl Microbiol 2021; 44:126270. [PMID: 34653842 DOI: 10.1016/j.syapm.2021.126270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.
Collapse
|
5
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Comprehensive genome analysis of a novel actinobacterium with high potential for biotechnological applications, Nonomuraea aridisoli sp. nov., isolated from desert soil. Antonie van Leeuwenhoek 2021; 114:1963-1975. [PMID: 34529164 DOI: 10.1007/s10482-021-01654-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
During a study to isolate such actinobacteria with unique metabolic potential, a novel actinobacterium, designated KC333T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of the strain was investigated using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain was most closely related to Nonomuraea terrae CH32T (99.0% sequence similarity), Nonomuraea maritima FXJ7.203 T (98.9%), Nonomuraea candida HMC10T (98.7%) and Nonomuraea gerenzanensis ATCC 39727 T (98.6%), and is therefore considered to represent a member of the genus Nonomuraea. However, the average nucleotide identity and digital DNA-DNA hybridization based on whole-genome sequences between strain KC333T and close relatives demonstrated that it represents a novel species of the genus Nonomuraea. The major cellular fatty acids of strain KC333T were iso-C16: 0, C17:0 10-methyl and iso-C16: 0 2OH. Strain KC333T contained meso-diaminopimelic, mannose, madurose and ribose in the cell-wall peptidoglycan. The predominant menaquinones were MK-9(H4) and MK-9(H6). The genome size of strain KC333T is approximately 9.86 Mb, and the genomic DNA G + C content of the strain is 71.3%. In addition to the polyphasic characterisation, comprehensive genome analysis for gene clusters encoding carbohydrate-active enzymes and bioactive secondary metabolites as well as CRISPR-associated sequences revealed the high biotechnological potential of the strain. Based on evidence collected from the genotypic, phenotypic, and phylogenetic analyses, a novel species, Nonomuraea aridisoli sp. nov. is proposed with KC333T (= DSM 107062 T = JCM 32584 T = KCTC 49111 T) as the type strain.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.,Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.
| |
Collapse
|
6
|
Veyisoglu A. Nonomuraea cypriaca sp. nov., isolated from soil. Arch Microbiol 2021; 203:2639-2645. [PMID: 33710377 DOI: 10.1007/s00203-021-02202-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
A novel actinobacterium, designated strain K274T, was isolated from soil collected from Zafer Cape (Cape Apostolos Andreas), the easternmost tip of Cyprus on the Karpas peninsula, Magusa, Northern Cyprus, and a polyphasic approach was used for characterization of the strain. The isolate was found to have chemotaxonomic and morphological properties associated with members of the genus Nonomuraea. The strain has the highest similarity to Nonomuraea zeae DSM 100528T with 99.1% similarity value. In the phylogenetic dendogram based on 16S rRNA gene sequence, strain K274T was formed a distinct clade together N. zeae DSM 100528T, 'Nonomuraea basaltis' 160415 (98.9% similarity), and 'Nonomuraea lycopersici' NEAU-DE8(1) (98.2% similarity). The genome sequence of strain K274T was 11.5 Mbp in size with a total of 11,848 protein-coding genes and 75 RNA genes. The genomic G + C content of the novel strain was 69.7 mol%. Both average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) results between the strain and phlyogenetic neighbours were well below the threshold value, and the novelty are supported by phenotypic and chemotaxonomic differences. Because of all these, strain K274T represents a novel species in the genus Nonomuraea, for which the name Nonomuraea cypriaca sp. nov. is proposed. The type strain is K274T (= DSM 45718T = KCTC 29095T).
Collapse
Affiliation(s)
- Aysel Veyisoglu
- Department of Medical Services and Techniques, Vocational School of Health Services, Sinop University, 57000, Sinop, Turkey.
| |
Collapse
|
7
|
Genomic insight into a novel actinobacterium, Actinomadura rubrisoli sp. nov., reveals high potential for bioactive metabolites. Antonie van Leeuwenhoek 2021; 114:195-208. [DOI: 10.1007/s10482-020-01511-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
8
|
Lipun K, Teo WFA, Suksaard P, Pathom-aree W, Duangmal K. Nonomuraea antri sp. nov., an actinomycete isolated from cave soil in Thailand. Int J Syst Evol Microbiol 2020; 70:5296-5303. [DOI: 10.1099/ijsem.0.004413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterium, designated strain NN258T, was isolated from a cave soil sample collected from a karst cave at Khao No-Khao Kaeo, Nakhon Sawan province, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus
Nonomuraea
. Strain NN258T showed the highest 16S rRNA gene sequence similarity values to
Nonomuraea candida
HMC10T,
Nonomuraea mesophila
6K102T,
Nonomuraea rubra
DSM 43768T,
Nonomuraea diastatica
KC712T and
Nonomuraea helvata
IFO 14681T. The strain formed an extensively branched substrate and aerial mycelia. The whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid, with glucose, madurose, mannose and ribose as the whole-cell sugars. The polar lipids were diphosphatidylglycerol, phosphotidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, two unidentified phospholipids, three unidentified sugar-containing phosphoaminolipids, an unidentified glycolipid and two unidentified lipids. The predominant menaquinone was MK-9(H4), with minor amounts of MK-9(H0), MK-9(H2) and MK-9(H6). Major cellular fatty acids (>10%) were iso-C16 : 0 and 10-methyl-C17 : 0. The G+C content of the genomic DNA was 71.0 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain NN258T and the reference strains were 79.9–80.9 % and 26.1–27.0 %, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strain NN258T represents a novel species of the genus
Nonomuraea
, for which the name Nonomuraea antri sp. nov. is proposed. The type strain is NN258T (=TBRC 11478T=NBRC 114269T).
Collapse
Affiliation(s)
- Kenika Lipun
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Wee Fei Aaron Teo
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Paweena Suksaard
- Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phranakhon Si Ayutthaya 13000, Thailand
| | - Wasu Pathom-aree
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Ay H. Nonomuraea terrae sp. nov., isolated from arid soil. Arch Microbiol 2020; 202:2197-2205. [DOI: 10.1007/s00203-020-01941-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/03/2023]
|
10
|
Saricaoglu S, Saygin H, Topkara AR, Gencbay T, Guven K, Cetin D, Sahin N, Isik K. Nonomuraea basaltis sp. nov., a siderophore-producing actinobacteria isolated from surface soil of basaltic parent material. Arch Microbiol 2020; 202:1535-1543. [PMID: 32236722 DOI: 10.1007/s00203-020-01866-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
A Gram-stain-positive, aerobic, spore-forming actinobacterial strain, designated 160415T, was isolated from a surface soil sample, which was formed on basaltic parent material, collected from Samsun, Turkey. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 160415T clustered closely with species of the genus Nonomuraea, and showed the highest sequence similarity to Nonomuraea zeae NEAU-ND5T, Nonomuraea candida HMC10T and Nonomuraea turkmeniaca DSM 43926T with 99.1%, 98.9% and 98.7%, respectively. Chemotaxonomic properties including major menaquinones, diaminopimelic acid, sugar and phospholipid profiles also confirmed the affiliation of the strain to the genus Nonomuraea. The DNA G+C content of strain 160415T was 69.6 mol%. DNA-DNA hybridization and average nucleotide identity values between the strain and closely related type strains were less than the recommended cut-off values. On the basis of phylogenetic relationships, genotypic and phenotypic characterizations, strain 160415T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea basaltis sp. nov. is proposed. The type strain is 160415T (= KCTC 39875T = DSM 104309T).
Collapse
Affiliation(s)
- Salih Saricaoglu
- Department of Therapy and Rehabilitation, Health Services Vocational College, Kirsehir Ahi Evran University, 44200, Kirsehir, Turkey.,Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Ahmet Ridvan Topkara
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Talha Gencbay
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kamil Isik
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.
| |
Collapse
|