1
|
Hou XR, Fu SY, Wang Y, Zhou JY, Qi TY, Li YF, Bu WJ, Xue HJ. Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae). Microorganisms 2024; 12:1885. [PMID: 39338558 PMCID: PMC11434518 DOI: 10.3390/microorganisms12091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Burkholderia (sensu lato) is a diverse group of β-Proteobacteria that exists worldwide in various environments. The SBE clade of this group was thought to be mutualistic with stinkbugs. Riptortus-Burkholderia was suggested as an ideal model system for studying insect-microbe symbiosis. To explore the strain-level diversity of Burkholderia at the individual and population levels of Riptortus stinkbugs (Hemiptera: Alydidae), and to uncover the factors affecting the Burkholderia community, large-scale sampling of two Riptortus species and deep sequencing data (16S amplicon) were used in the present study. Our results showed that: (1) the proportions of facultative symbiotic bacteria Burkholderia were very high, with an average proportion of 87.1% in the samples; (2) only six out of 1373 Burkholderia amplicon sequence variants (ASVs) did not belong to the SBE clade, accounting for only 0.03% of Burkholderia; (3) a relatively small number of Burkholderia ASVs had a large number of sequences, with 22, 54, and 107 ASVs accounting for more than 1.0%, 0.1%, and 0.01% of the total Burkholderia sequences, respectively; (4) multiple Burkholderia ASVs were present in most Riptortus individuals, but there was one dominant or two codominant ASVs, and codominance was more likely to occur when the genetic distance between the two codominant ASVs was small; and (5) the beta diversity of Burkholderia was significantly different between the two host species (PerMANOVA: both Jaccard and Bray-Curtis, p < 0.001) and among localities (PerMANOVA: both Jaccard and Bray-Curtis, p < 0.001). Two-way PerMANOVA also indicated that both the host (Bray-Curtis, p = 0.020; Jaccard, p = 0.001) and geographical location (Bray-Curtis, p = 0.041; Jaccard, p = 0.045) influence Burkholderia communities; furthermore, Mantel tests showed that the Burkholderia communities were significantly correlated with the geographical distance of sample locations (R = 0.056, p = 0.001). Together, our findings demonstrate the fine-scale diversity of Burkholderia symbionts and suggest a region- and host-dependent pattern of Burkholderia in Riptortus stinkbugs.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Si-Ying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia-Yue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tian-Yi Qi
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Fei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen-Jun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huai-Jun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Valdez-Nuñez RA, Ramos-Luna LC, Meza-Catalán PP, Asencios-Sifuentes NR, Ocaña-Rodriguez AW, Chávez-Galarza JC, Sandoval-Vergara AN, Béna G. Genetic Diversity and Virulence of Phytopathogenic Burkholderia glumae Strains Isolated from Rice Cultivars in Valleys of the High Jungle of Perú. PLANT DISEASE 2024; 108:2376-2388. [PMID: 38386299 DOI: 10.1094/pdis-09-23-1823-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Burkholderia glumae causes bacterial leaf blight in rice, and its global spread has been exacerbated by climate change. To understand the genetic diversity and virulence of B. glumae strains isolated from rice cultivars in Perú, 47 isolates were obtained from infected rice fields, all belonging to B. glumae, and confirmed by recA and toxB sequences. The BOX-PCR typing group has 38 genomic profiles, and these turn into seven variable number tandem repeats (VNTR) haplotypes. There was no correlation between clustering and geographical origin. Nineteen strains were selected for phenotypic characterization and virulence, using both the maceration level of the onion bulb proxy and inoculation of seeds of two rice cultivars. Several strains produced pigments other than toxoflavin, which correlated with onion bulb maceration. In terms of virulence at the seed level, all strains produced inhibition at the root and coleoptile level, but the severity of symptoms varied significantly between strains, revealing significant differences in pathogenicity. There is no correlation between maceration and virulence scores, probably reflecting different virulence mechanisms depending on the host infection stage. This is the first study to evaluate the VNTR diversity and virulence of Peruvian strains of B. glumae in two commercial cultivars.
Collapse
Affiliation(s)
- Renzo A Valdez-Nuñez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Lucero C Ramos-Luna
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Patricia P Meza-Catalán
- Biotechnology Research Laboratory, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | | | - Angel W Ocaña-Rodriguez
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Julio C Chávez-Galarza
- Departamento Académico de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Lima, Perú
| | - Ana N Sandoval-Vergara
- Departamento Académico Agrosilvopastoril, Universidad Nacional de San Martín, Tarapoto, Perú
| | - Gilles Béna
- IRD, CIRAD, INRAe, Institut Agro, PHIM (Plant Health Institute of Montpellier), University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Kim B, Han SR, Lee H, Oh TJ. Insights into group-specific pattern of secondary metabolite gene cluster in Burkholderia genus. Front Microbiol 2024; 14:1302236. [PMID: 38293557 PMCID: PMC10826400 DOI: 10.3389/fmicb.2023.1302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Burkholderia is a versatile strain that has expanded into several genera. It has been steadily reported that the genome features of Burkholderia exhibit activities ranging from plant growth promotion to pathogenicity across various isolation areas. The objective of this study was to investigate the secondary metabolite patterns of 366 Burkholderia species through comparative genomics. Samples were selected based on assembly quality assessment and similarity below 80% in average nucleotide identity. Duplicate samples were excluded. Samples were divided into two groups using FastANI analysis. Group A included B. pseudomallei complex. Group B included B. cepacia complex. The limitations of MLST were proposed. The detection of genes was performed, including environmental and virulence-related genes. In the pan-genome analysis, each complex possessed a similar pattern of cluster for orthologous groups. Group A (n = 185) had 14,066 cloud genes, 2,465 shell genes, 682 soft-core genes, and 2,553 strict-core genes. Group B (n = 181) had 39,867 cloud genes, 4,986 shell genes, 324 soft-core genes, 222 core genes, and 2,949 strict-core genes. AntiSMASH was employed to analyze the biosynthetic gene cluster (BGC). The results were then utilized for network analysis using BiG-SCAPE and CORASON. Principal component analysis was conducted and a table was constructed using the results obtained from antiSMASH. The results were divided into Group A and Group B. We expected the various species to show similar patterns of secondary metabolite gene clusters. For in-depth analysis, a network analysis of secondary metabolite gene clusters was conducted, exemplified by BiG-SCAPE analysis. Depending on the species and complex, Burkholderia possessed several kinds of siderophore. Among them, ornibactin was possessed in most Burkholderia and was clustered into 4,062 clans. There was a similar pattern of gene clusters depending on the species. NRPS_04014 belonged to siderophore BGCs including ornibactin and indigoidine. However, it was observed that each family included a similar species. This suggests that, besides siderophores being species-specific, the ornibactin gene cluster itself might also be species-specific. The results suggest that siderophores are associated with environmental adaptation, possessing a similar pattern of siderophore gene clusters among species, which could provide another perspective on species-specific environmental adaptation mechanisms.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
| | - Hyun Lee
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Division of Computer Science and Engineering, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
4
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
5
|
Bach E, Volpiano CG, Sant'Anna FH, Passaglia LMP. Genome-based taxonomy of Burkholderia sensu lato: Distinguishing closely related species. Genet Mol Biol 2023; 46:e20230122. [PMID: 37935243 PMCID: PMC10629849 DOI: 10.1590/1678-4685-gmb-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
The taxonomy of Burkholderia sensu lato (s.l.) has been revisited using genome-based tools, which have helped differentiate closely related species. Many species from this group are indistinguishable through phenotypic traits and 16S rRNA gene sequence analysis. Furthermore, they also exhibit whole-genome Average Nucleotide Identity (ANI) values in the twilight zone for species circumscription (95-96%), which may impair their correct classification. In this work, we provided an updated Burkholderia s.l. taxonomy focusing on closely related species and give other recommendations for those developing genome-based taxonomy studies. We showed that a combination of ANI and digital DNA-DNA hybridization (dDDH) applying the universal cutoff values of 95% and 70%, respectively, successfully discriminates Burkholderia s.l. species. Using genome metrics with this pragmatic criterion, we demonstrated that i) Paraburkholderia insulsa should be considered a later heterotypic synonym of Paraburkholderia fungorum; ii) Paraburkholderia steynii differs from P. terrae by harboring symbiotic genes; iii) some Paraburkholderia are indeed different species based on dDDH values, albeit sharing ANI values close to 95%; iv) some Burkholderia s.l. indeed represent new species from the genomic viewpoint; iv) some genome sequences should be evaluated with care due to quality concerns.
Collapse
Affiliation(s)
- Evelise Bach
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Camila Gazolla Volpiano
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Fernando Hayashi Sant'Anna
- Hospital Moinhos de Vento, Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI - SUS), Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Gao ZH, Guo XY, Liu YZ, Zhang QM, Tong XJ, Qiu LH. Trinickia violacea sp. nov. and Trinickia terrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917540 DOI: 10.1099/ijsem.0.006147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Two Gram-stain negative, aerobic and rod-shaped bacterial strains, DHOD12T and 7GSK02T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Strain DHOD12T grew at 4-42 °C (optimum, 28-33 °C), pH 4.0-8.5 (optimum, pH 5.5-6.5) and in the presence of 0-1.5 % (w/v; optimum, 0-0.5 %)NaCl; while strain 7GSK02T grew at 12-42 °C (optimum, 28-33 °C), pH 4.0-8.5 (optimum, pH 5.0-6.0) and in the presence of 0-0.5 % (w/v; optimum, 0 %) NaCl. Strains DHOD12T and 7GSK02T had the highest 16S rRNA sequence similarities of 98.0 and 98.3 % with the same species Trinickia mobilis DHG64T, respectively, and 98.4 % between themselves. In the 16S rRNA phylogeny, they formed a clade that was sister to a major cluster consisting of all described Trinickia species. Phylogenomic analyses with the UBCG and PhyloPhlAn methods consistently showed that strains DHOD12T and 7GSK02T formed a clade with T. mobilis DHG64T that was a sister of a cluster containing the remainder of the Trinickia species. The DNA G+C contents of strains DHOD12T and 7GSK02T were 63.1 and 64.6 mol%, respectively. Digital DNA-DNA hybridization and average nucleotide identity values of strains DHOD12T, 7GSK02T and their closely related strains were in the ranges of 21.6-31.4 % and 77.1-86.9 %, respectively. These two strains had the same major respiratory quinone, ubiquinone-8, and both had C16 : 0, C17 : 0 cyclo and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) as their major fatty acids. Their major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Genomic analysis indicated that the two strains could have the potential to degrade aromatic compounds like other Trinickia species. On the basis of phenotypic and phylogenetic results, strains DHOD12T and 7GSK02T represent two novel species of the genus Trinickia, for which the names Trinickia violacea sp. nov. (type strain DHOD12T=LMG 30258T=CGMCC 1.15436T) and Trinickia terrae sp. nov. (type strain 7GSK02T=CGMCC 1.15432T=KCTC 62468T) are proposed.
Collapse
Affiliation(s)
- Zeng-Hong Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiu-Yin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yi-Zhi Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xin-Jie Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
7
|
Shi H, Ambika Manirajan B, Ratering S, Geissler-Plaum R, Schnell S. Robbsia betulipollinis sp. nov., Isolated from Pollen of Birch (Betula pendula). Curr Microbiol 2023; 80:234. [PMID: 37278851 DOI: 10.1007/s00284-023-03344-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
One gram-negative strain designated Bb-Pol-6 T was isolated from birch (Betula pendula) pollen at Giessen area, Germany. The analysis of 16S rRNA gene-based phylogenies indicated the next-relative genera were Robbsia, Chitinasiproducens, Pararobbsia and Paraburkholderia (96-95.6%). Further comparative genome analysis and phylogenetic tree-based methods revealed its phylogenetic position under the genus Robbsia. The genome of strain Bb-Pol-6 T was 5.04 Mbp with 4401 predicted coding sequences and a G + C content of 65.31 mol%. Average amino acid identity, average nucleotide identity, digital DNA-DNA hybridization and percentage of conserved proteins values to Robbsia andropogonis DSM 9511 T were 68.0, 72.5, 22.7 and 65.85%, respectively. Strain Bb-Pol-6 T was rod-shaped, non-motile, facultative anaerobic and grew optimally at 28 °C and pH 6-7. Ubiquinone 8 was the major respiratory quinone and the major cellular fatty acids were C16:0, C19:0 cyclo ω7c, C17:0 cyclo ω7c and C17:1 ω6c. The dominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. Based on the genomic physiological and phenotypic characteristics, strain Bb-Pol-6 T was considered a novel species under the genus Robbsia, for which the name Robbsia betulipollinis sp. nov. was proposed. The type strain is Bb-Pol-6 T (= LMG 32774 T = DSM 114812 T).
Collapse
Affiliation(s)
- Haoran Shi
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Binoy Ambika Manirajan
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig University Giessen, 35392, Giessen, Germany
- School of Biosciences, Mahatma Gandhi University, Kerala, India
| | - Stefan Ratering
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Rita Geissler-Plaum
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig University Giessen, 35392, Giessen, Germany
| |
Collapse
|
8
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
9
|
Rodríguez-Cisneros M, Morales-Ruíz LM, Salazar-Gómez A, Rojas-Rojas FU, Estrada-de los Santos P. Compilation of the Antimicrobial Compounds Produced by Burkholderia Sensu Stricto. Molecules 2023; 28:1646. [PMID: 36838633 PMCID: PMC9958762 DOI: 10.3390/molecules28041646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Due to the increase in multidrug-resistant microorganisms, the investigation of novel or more efficient antimicrobial compounds is essential. The World Health Organization issued a list of priority multidrug-resistant bacteria whose eradication will require new antibiotics. Among them, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae are in the "critical" (most urgent) category. As a result, major investigations are ongoing worldwide to discover new antimicrobial compounds. Burkholderia, specifically Burkholderia sensu stricto, is recognized as an antimicrobial-producing group of species. Highly dissimilar compounds are among the molecules produced by this genus, such as those that are unique to a particular strain (like compound CF66I produced by Burkholderia cepacia CF-66) or antimicrobials found in a number of species, e.g., phenazines or ornibactins. The compounds produced by Burkholderia include N-containing heterocycles, volatile organic compounds, polyenes, polyynes, siderophores, macrolides, bacteriocins, quinolones, and other not classified antimicrobials. Some of them might be candidates not only for antimicrobials for both bacteria and fungi, but also as anticancer or antitumor agents. Therefore, in this review, the wide range of antimicrobial compounds produced by Burkholderia is explored, focusing especially on those compounds that were tested in vitro for antimicrobial activity. In addition, information was gathered regarding novel compounds discovered by genome-guided approaches.
Collapse
Affiliation(s)
- Mariana Rodríguez-Cisneros
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Leslie Mariana Morales-Ruíz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, León, Guanajuato 37684, Mexico
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico
| |
Collapse
|
10
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02117-2. [PMID: 36178538 DOI: 10.1007/s00248-022-02117-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan.
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| |
Collapse
|
11
|
Ohbayashi T, Cossard R, Lextrait G, Hosokawa T, Lesieur V, Takeshita K, Tago K, Mergaert P, Kikuchi Y. Intercontinental Diversity of Caballeronia Gut Symbionts in the Conifer Pest Bug Leptoglossus occidentalis. Microbes Environ 2022; 37. [PMID: 35965097 PMCID: PMC9530724 DOI: 10.1264/jsme2.me22042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the “stinkbug-associated beneficial and environmental (SBE)” group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-β. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-β. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A molecular phylogenetic analysis of the 16S rRNA gene demonstrated that SBE-β was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the “Coreoidea clade” occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-β-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-β outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO).,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | | | | | | | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO)
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center.,Graduate School of Agriculture, Hokkaido University
| |
Collapse
|
12
|
Jia J, Ford E, Hobbs SM, Baird SM, Lu SE. Occidiofungin Is the Key Metabolite for Antifungal Activity of the Endophytic Bacterium Burkholderia sp. MS455 Against Aspergillus flavus. PHYTOPATHOLOGY 2022; 112:481-491. [PMID: 34433293 DOI: 10.1094/phyto-06-21-0225-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxin is a secondary metabolite produced by Aspergillus fungi and presents a major food safety concern globally. Among the available methods for prevention and control of aflatoxin, the application of antifungal bacteria has gained favor in recent years. An endophytic bacterium MS455, isolated from soybean, exhibited broad-spectrum antifungal activity against economically important pathogens, including Aspergillus flavus. MS455 was identified as a strain of Burkholderia based on genomic analysis. Random and site-specific mutations were used in discovery of the genes that share high homology to the ocf gene cluster of Burkholderia contaminans strain MS14, which is responsible for production of the antifungal compound occidiofungin. RNA sequencing analysis demonstrated that ORF1, a homolog to the ambR1 LuxR-type regulatory gene, regulates occidiofungin biosynthesis in MS455. Additionally, 284 differentially expressed genes, including 138 upregulated and 146 downregulated genes, suggesting that, in addition to its role in occidiofungin production, ORF1 is involved in expression of multiple genes, especially those involved in ornibactin biosynthesis. Plate bioassays showed the growth of A. flavus was significantly inhibited by the wild-type strain MS455 as compared with the ORF1 mutant. Similarly, corn kernel assays showed that growth of A. flavus and aflatoxin production were reduced significantly by MS455 as compared with buffer control and the ORF1 mutant. Collectively, the results demonstrated that production of occidiofungin is essential for antifungal activity of the endophytic bacterium MS455. This research has provided insights about antifungal mechanisms of MS455 and development of biological approaches to prevent aflatoxin contamination in plant production.
Collapse
Affiliation(s)
- Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Emerald Ford
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sarah M Hobbs
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sonya M Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
13
|
Morales-Ruíz LM, Rodríguez-Cisneros M, Kerber-Díaz JC, Rojas-Rojas FU, Ibarra JA, Estrada-de Los Santos P. Burkholderia orbicola sp. nov., a novel species within the Burkholderia cepacia complex. Arch Microbiol 2022; 204:178. [PMID: 35174425 DOI: 10.1007/s00203-022-02778-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Genome analysis of strains placed in the NCBI genome database as Burkholderia cenocepacia defined nine genomic species groups. The largest group (259 strains) corresponds to B. cenocepacia and the second largest group (58 strains) was identified as "Burkholderia servocepacia", a Burkholderia species classification which has not been validly published. The publication of "B. servocepacia" did not comply with Rule 27 and Recommendation 30 from the International Code of Nomenclature of Prokaryotes (ICNP) and have errors in the type strain name and the protologue describing the novel species. Here, we correct the position of this species by showing essential information that meets the criteria defined by ICNP. After additional analysis complying with taxonomic criteria, we propose that the invalid "B. servocepacia" be renamed as Burkholderia orbicola sp. nov. The original study proposing "B. servocepacia" was misleading, because this name derives from the Latin "servo" meaning "to protect/watch over", and the authors proposed this based on the beneficial biocontrol properties of several strains within the group. However, it is clear that "B. servocepacia" isolates are capable of opportunistic infection, and the proposed name Burkholderia orbicola sp. nov. takes into account these diverse phenotypic traits. The type strain is TAtl-371 T (= LMG 30279 T = CM-CNRG 715 T).
Collapse
Affiliation(s)
- Leslie-Mariana Morales-Ruíz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Mariana Rodríguez-Cisneros
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Jeniffer-Chris Kerber-Díaz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Fernando-Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.,Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - J Antonio Ibarra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Paulina Estrada-de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
| |
Collapse
|
14
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
15
|
Pangenome inventory of Burkholderia sensu lato, Burkholderia sensu stricto, and the Burkholderia cepacia complex reveals the uniqueness of Burkholderia catarinensis. Genomics 2021; 114:398-408. [PMID: 34780935 DOI: 10.1016/j.ygeno.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022]
Abstract
Here the pangenome analysis of Burkholderia sensu lato (s.l.) was performed for the first time, together with an updated analysis of the pangenome of Burkholderia sensu stricto, and Burkholderia cepacia complex (Bcc) focusing on the Bcc B. catarinensis specific features of its re-sequenced genome. The pangenome of Burkholderia s.l., Burkholderia s.s., and of the Bcc are open, composed of more than 96% of accessory genes, and more than 62% of unknown genes. Functional annotations showed that secondary metabolism genes belong to the variable portion of genomes, which might explain their production of several compounds with varied bioactivities. Taken together, this work shows the great variability and uniqueness of these genomes and reveals an underexplored unknown potential in poorly characterized genes. Regarding B. catarinensis 89T, its genome harbors genes related to hydrolases production and plant growth promotion. This draft genome will be valuable for further investigation of its biotechnological potentials.
Collapse
|
16
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
17
|
Lin SY, Hameed A, Tsai CF, Young CC. Zeimonas arvi gen. nov., sp. nov., of the family Burkholderiaceae, harboring biphenyl- and phenolic acid-metabolizing genes, isolated from a long-term ecological research field. Antonie van Leeuwenhoek 2021; 114:2101-2111. [PMID: 34599477 DOI: 10.1007/s10482-021-01664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022]
Abstract
A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-CFT501T, harboring xenobiotic- and allelochemical-metabolizing genes, isolated from a long-term ecological research field in Taiwan. Cells of strain CC-CFT501T were catalase- and oxidase-positive, non-motile and short rods. Optimal growth occurred at 30 °C, pH 8 and 1% NaCl. Strain CC-CFT501T was found to share high 16S rRNA gene sequence similarity with the members of genera Quisquiliibacterium (94.3%, n = 1), Pandoraea (93.4-94.0%, n = 23) and Paraburkholderia (93.3-94.0%, n = 9), affiliated to the family Burkholderiaceae. Strain CC-CFT501T shared 76.4% orthologous average nucleotide identity (OrthoANI) and 20.9% digital DNA-DNA hybridization (dDDH) values with Quisquiliibacterium transsilvanicum DSM 29781T. Draft genome sequence (3.83 Mb) of strain CC-CFT501T revealed several genes encoding the proteins involved in biphenyl and phenolic acid metabolism. Fatty acid profile contained C16:0, C18:0, C10:0 3-OH, C16:1 ω7c/C16:1 ω6c and C18:1 ω7c/C18:1 ω6c in predominant amounts. The polar lipid profile consisted of phosphatidylethanolamine, thirteen unidentified amino lipids, two unidentified phospholipids and two unidentified glycolipids. The major polyamine was spermidine and ubiquinone Q-8 was the sole respiratory quinone. The DNA G + C content was 70.0 mol%. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT501T is considered to represent a novel genus and species of the family Burkholderiaceae, for which the name Zeimonas arvi gen. nov., sp. nov. is proposed. The type strain of the type species is CC-CFT501T (= BCRC 81218T = JCM 33506T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
18
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
19
|
Lozano MJ, Mogro EG, Draghi WO. Phylogenomic analysis supports the reclassification of Burkholderia novacaledonica as Caballeronia novacaledonica comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34165423 DOI: 10.1099/ijsem.0.004843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia novacaledonica is a Betaproteobacterial species isolated from ultramafic soils in New Caledonia. The characterization and classification of this species into the Burkholderia genus was done simultaneously with the proposal of the new genus Caballeronia, initially composed of closely related Burkholderia glathei-like species. Thereafter, some reports based on the use of phylogenetic marker genes suggested that B. novacaledonica forms part of Caballeronia genus. Lacking a formal validation, and with the availability of its genome sequence, a genome-based phylogeny of B. novacaledonica was obtained to unravel its taxonomic position in Burkholderia sensu lato. A partial gyrB gene phylogeny, extended multilocus sequence typing on homologous protein sequences, and genomic distance-based phylogeny, all support the placement of this species in the Caballeronia genus. Therefore, the reclassification of B. novacaledonica to Caballeronia novacaledonica comb. nov. is proposed.
Collapse
Affiliation(s)
- Mauricio Javier Lozano
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| | - Ezequiel Gerdardo Mogro
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biología Molecular. Facultad de Cs. Exactas. Universidad Nacional de La Plata. CONICET La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
20
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
21
|
Palomares-Rius JE, Gutiérrez-Gutiérrez C, Mota M, Bert W, Claeys M, Yushin VV, Suzina NE, Ariskina EV, Evtushenko LI, Subbotin SA, Castillo P. ' Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2021; 71:004888. [PMID: 34287117 PMCID: PMC8489844 DOI: 10.1099/ijsem.0.004888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1-EBT (92.9 % sequence identity) and 'Candidatus Glomeribacter gigasporarum' BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8-1.2 µm wide and 2.5-6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAST as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAST is therefore proposed as representing 'Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov.
Collapse
Affiliation(s)
- Juan E. Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Carlos Gutiérrez-Gutiérrez
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Manuel Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Vladimir V. Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Natalia E. Suzina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elena V. Ariskina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Lyudmila I. Evtushenko
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Sergei A. Subbotin
- California Department of Food and Agriculture, Plant Pest Diagnostic Center, Sacramento, CA 95832, USA
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
22
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
23
|
Gao ZH, Zhang QM, Lv YY, Wang YQ, Zhao BN, Qiu LH. Paraburkholderia acidiphila sp. nov., Paraburkholderia acidisoli sp. nov. and Burkholderia guangdongensis sp. nov., isolated from forest soil, and reclassification of Burkholderia ultramafica as Paraburkholderia ultramafica comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 33555242 DOI: 10.1099/ijsem.0.004690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-stain-negative, aerobic, motile and rod-shaped bacterial strains, 7Q-K02T, DHF22T and DHOM02T, were isolated from forest soil sampled at Dinghushan Biosphere Reserve, Guangdong Province, China. Strains 7Q-K02T, DHF22T and DHOM02T grew at 4-37, 4-42 and 12-37 °C, pH 3.0-8.5, 3.5-8.5 and 5.0-8.0, and in the presence of 0-3.0, 0-3.5 and 0-2.5 % (w/v) NaCl; with optima at 28-33, 28 and 28-33 °C, pH 3.5-6.5, 4.0-5.5 and 6.5-7.0, and 0-1.5, 0-1.5 and 0.5-1.5 % (w/v) NaCl, respectively. Strains 7Q-K02T and DHF22T have the highest 16S rRNA gene sequence similarities of 99.0 and 98.0 % to Paraburkholderia sacchari LMG 19450T and 97.7 % between themselves, while strain DHOM02T shares the highest similarity of 98.4 % to 'Burkholderia rinojensis' A396T followed by 98.3 % to Burkholderia plantarii ATCC 43733T. In the 16S rRNA gene sequence phylogram, strain 7Q-K02T formed a sister branch with Paraburkholderia sacchari, Paraburkholderia oxyphila and Paraburkholderia paradisi, and strain DHF22T was separated from all other species within the genus Paraburkholderia, while strain DHOM02T formed a separated clade with members of the genus Burkholderia. The DNA G+C contents of strains 7Q-K02T, DHF22T and DHOM02T wwe 64.3, 65.4 and 66.6 %, respectively. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of strains 7Q-K02T, DHF22T and closely related Paraburkholderia strains were in the ranges of 25.5-43.7 % and 81.5-91.3 %, respectively. While dDDH and ANI values between strain DHOM02T and Burkholderia strains with genome sequence data were in the ranges of 22.4-31.0 % and 78.2-86.1 %, respectively. These three strains have the same major respiratory quinone: ubiquinone-8. Strains 7Q-K02T, DHF22T and DHOM02T have C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) as their major fatty acid compositions. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of phenotypic, phylogenetic, genomic analyses and chemotaxonomic data, strains 7Q-K02T and DHF22T represent two novel species of the genus Paraburkholderia, for which the names Paraburkholderia acidiphila sp. nov. (type strain 7Q-K02T=CGMCC 1.15433T=KCTC 62472T=LMG 29209T) and Paraburkholderia acidisoli sp. nov. (type strain DHF22T=GDMCC 1.1448T=LMG 30262T) are proposed, while strain DHOM02T represents a novel species in the genus Burkholderia, for which the name Burkholderia guangdongensis sp. nov. (type strain DHOM02T=KCTC 42625T=LMG 28843T) is proposed. We also propose to transfer Burkholderia ultramafica to the genus Paraburkholderia as Paraburkholderia ultramafica comb. nov. based mainly on the results of phylogenomic analysis.
Collapse
Affiliation(s)
- Zeng-Hong Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying-Ying Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - You-Qi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Bing-Nan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
24
|
Esmaeel Q, Jacquard C, Sanchez L, Clément C, Ait Barka E. The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Sci Rep 2020; 10:19393. [PMID: 33173115 PMCID: PMC7655954 DOI: 10.1038/s41598-020-76483-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Plant-associated Burkholderia spp. have been shown to offer a promising alternative method that may address concerns with ecological issue associated with pesticide overuse in agriculture. However to date, little work has studied the role of Burkholderia species as biocontrol agents for grapevine pathogens. To this end, two Burkholderia strains, BE17 and BE24 isolated from the maize rhizosphere in France, were investigated to determine their biocontrol potential and their ability to induce systemic resistance against grey mould disease in grapevine. Results showed the capacity of both strains to inhibit spore germination and mycelium growth of Botrytis cinerea. Experimental inoculation with BE17 and BE24 showed a significant protection of bacterized-plantlets against grey mould compared to the non-bacterized control. BE17 and BE24-bacterized plants accumulated more reactive oxygen species and an increased callose deposition was observed in leaves of bacterized plantlets compared to the control plantlets. In bacterized plants, gene expression analysis subsequent to B. cinerea challenge showed that strains BE17 and BE24 significantly increased the relative transcript level of pathogenesis-related (PR) proteins PR5 and PR10, two markers involved in the Salicylic acid (SA)-signaling pathway. Furthermore, in silico analysis of strains revealed the presence of genes involved in plant growth promotion and biocontrol highlighting the attractiveness of these strains for sustainable agricultural applications.
Collapse
Affiliation(s)
- Qassim Esmaeel
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France.
| | - Cédric Jacquard
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Essaid Ait Barka
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France.
| |
Collapse
|
25
|
Paraburkholderia lycopersici sp. nov., a nitrogen-fixing species isolated from rhizoplane of Lycopersicon esculentum Mill. var. Saladette in Mexico. Syst Appl Microbiol 2020; 43:126133. [PMID: 32998072 DOI: 10.1016/j.syapm.2020.126133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/29/2023]
Abstract
A survey of our in-house bacterial collection identified a group of six strains isolated from the tomato rhizoplane that possessed 16S rRNA gene sequences with 98.2% sequence similarity to Paraburkholderia pallida, suggesting that these strains represented a novel species. Multilocus sequence analysis using gltB, lepA and recA gene sequences showed the clustering of the strains and the BOX-PCR patterns were similar among these strains. The average nucleotide identity and the DNA-DNA virtual hybridization of strain TNe-862T was <89% and <34%, respectively, to the genomes of any sequenced Paraburkholderia species. The genome of strain TNe-862T possessed all the genes necessary for nitrogen fixation and biosynthesis of indoleacetic acid and antimicrobials terpenes, phosphonates and bacteriocins. It also contained genes for metal resistance, xenobiotic degradation, and hydrolytic enzymes such as a putative chitinase and isoamylase. Even though the strain contained potential genes for degradation of cellulose and starch, the bacterium was unable to utilize these substrates in culture medium. The genome encoded flagella and pili as well as multiple chemotaxis systems. In addition, genes encoding for the type I, II, IV, V and VI secretion systems were also present. The strains grow up to 42°C and 5% NaCl. The optimum growth pH was 8. The major cellular fatty acids were C16:0 and C18:1 ω7c. Based on this polyphasic analysis, these strains represent a novel species in the genus Paraburkholderia, for which the name Paraburkholderia lycopersici sp. nov. is proposed. The type strain is TNe-862T (=LMG 26415T=CIP 110323T).
Collapse
|