1
|
Singh A, Misser S, Allam M, Chan WY, Ismail A, Munhenga G, Oliver SV. The Effect of Larval Exposure to Heavy Metals on the Gut Microbiota Composition of Adult Anopheles arabiensis (Diptera: Culicidae). Trop Med Infect Dis 2024; 9:249. [PMID: 39453276 PMCID: PMC11510740 DOI: 10.3390/tropicalmed9100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles arabiensis is a highly adaptable member of the An. gambiae complex. Its flexible resting behaviour and diverse feeding habits make conventional vector control methods less effective in controlling this species. Another emerging challenge is its adaptation to breeding in polluted water, which impacts various life history traits relevant to epidemiology. The gut microbiota of mosquitoes play a crucial role in their life history, and the larval environment significantly influences the composition of this bacterial community. Consequently, adaptation to polluted breeding sites may alter the gut microbiota of adult mosquitoes. This study aimed to examine how larval exposure to metal pollution affects the gut microbial dynamics of An. arabiensis adults. Larvae of An. arabiensis were exposed to either cadmium chloride or copper nitrate, with larvae reared in untreated water serving as a control. Two laboratory strains (SENN: insecticide unselected, SENN-DDT: insecticide selected) and F1 larvae sourced from KwaZulu-Natal, South Africa, were exposed. The gut microbiota of the adults were sequenced using the Illumina Next Generation Sequencing platform and compared. Larval metal exposure affected alpha diversity, with a more marked difference in beta diversity. There was evidence of core microbiota shared between the untreated and metal-treated groups. Bacterial genera associated with metal tolerance were more prevalent in the metal-treated groups. Although larval metal exposure led to an increase in pesticide-degrading bacterial genera in the laboratory strains, this effect was not observed in the F1 population. In the F1 population, Plasmodium-protective bacterial genera were more abundant in the untreated group compared to the metal-treated group. This study therefore highlights the importance of considering the larval environment when searching for local bacterial symbionts for paratransgenesis interventions.
Collapse
Affiliation(s)
- Ashmika Singh
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shristi Misser
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Lin J, Zeng C, Li X, Tang Q, Liao J, Jiang Y, Zeng X. Microorganisms in the rumen and intestine of camels have the ability to degrade 2-amino-3-methylimidazo[4, 5-f]quinoline. Food Sci Nutr 2024; 12:4667-4679. [PMID: 39055183 PMCID: PMC11266888 DOI: 10.1002/fsn3.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Heterocyclic amines (HAs) are a group of mutagenic and carcinogenic compounds produced from the processing of high-protein foods, which include 2-amino-3-methylimidazo[4, 5-f]quinoline (IQ) showing the strongest carcinogenic effect. Camels are able to digest HAs in foods, which provide rich microbial resources for the study. Thus, camel rumen and intestinal microbiota were used to degrade IQ, and the dominant microorganisms and their degradation characteristics were investigated. After three generations of culture with IQ as the sole carbon source, the highest abundance in rumen and intestinal microbes was found in the Proteobacteria phylum. The strains of third generation of the rumen contents were mainly attributed to the genera Brevundimonas and Pseudomonas, and the dominant genera in intestine were Ochrobactrum, Bacillus, and Pseudomonas. Microorganisms were further isolated and purified from the third generation cultures. These 27 strains from the rumen (L1-L27) and 23 strains from the intestine (C1-C23) were obtained. Among them, four strains with the most effective degrading abilities were as follows: L6 (28.55% of IQ degrading rate) and C1 (25.19%) belonged to the genus Ochrobactrum, L15 (23.41%) belonged to the genus Pseudomonas, and C16 (20.89%) were of the genus Bacillus. This study suggested the application of abundant microbial resources from camels' digestive tract to biodegrade foodborne toxins.
Collapse
Affiliation(s)
- Jialing Lin
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
- Solid‐State Fermentation Resource Utilization Key Laboratory of Sichuan ProvinceYibinSichuanChina
- Sichuan Tianfu New District People's HospitalChengduChina
| | - Chuanhui Zeng
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| | - Xueli Li
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
- Solid‐State Fermentation Resource Utilization Key Laboratory of Sichuan ProvinceYibinSichuanChina
| | - Qin Tang
- Xinjiang Urumqi Traditional Chinese Medicine HospitalUrumqiXinjiangChina
| | - Jing Liao
- Meat Processing Key Laboratory of Sichuan ProvinceChengduSichuanChina
| | - Yan Jiang
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| | - Xianchun Zeng
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| |
Collapse
|
3
|
Wu Y, Wang L, Hui X, Tian G. Evaluation of a Multilocus Variable-Number Tandem-Repeat Analysis Scheme for Typing Ochrobactrum anthropi. Microorganisms 2024; 12:1211. [PMID: 38930593 PMCID: PMC11205649 DOI: 10.3390/microorganisms12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Ochrobactrum anthropi (O. anthropi) is found in water, soil, plants and animals. Even though it has low virulence, it has increasingly been found to cause a number of infectious diseases in people with low immunity. The identification of O. anthropi mainly uses biochemical methods, such as the API 20NE or Vitek-2. The typing studies of O. anthropi have mainly utilized PFGE, rep-PCR, AFLP, 16s rDNA sequencing, RecA-PCR RFLP, and MALDI-TOF MS. This study aims to evaluate the polymorphisms of variable-number tandem-repeats (VNTRs) within genomic DNA of O. anthropi strains. The tandem repeats (TRs) in genomic DNA are discovered using Tandem Repeat Finder software (version 4.09). Twelve different VNTRs are designated and assigned to the nomenclature. The primers for PCR of 12 loci are designed. The PCR product size is converted to the number of tandem repeats in every locus. The relatedness of 65 O. anthropi strains from geographically different countries are analyzed by means of 12-variable-number tandem-repeat analysis(MLVA-12). A total of 51 different genotypes are found in 65 O. anthropi strains. These strains, which were collected from the same environmental samples, hospitals, and countries, are clustered within the same or closely genotypes. The MLVA-12 assay has a good discriminatory power for species determination, typing of O. anthropi, and inferring the origin of bacteria.
Collapse
Affiliation(s)
- Yihan Wu
- Inner Mongolia Autonomous Region Center for Disease Prevention and Control, Huhhot 010030, China; (Y.W.); (L.W.); (X.H.)
| | - Liping Wang
- Inner Mongolia Autonomous Region Center for Disease Prevention and Control, Huhhot 010030, China; (Y.W.); (L.W.); (X.H.)
| | - Xiachun Hui
- Inner Mongolia Autonomous Region Center for Disease Prevention and Control, Huhhot 010030, China; (Y.W.); (L.W.); (X.H.)
| | - Guozhong Tian
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Yang Y, Xu Z, Yang L, Hu MY, Jiang GY, Chen J, Yang YC, Tian Y. Ochrobactrum chromiisoli sp. nov., Isolated from Chromium-Contaminated Soil. Curr Microbiol 2023; 81:50. [PMID: 38150064 DOI: 10.1007/s00284-023-03562-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
A Gram-stain-negative, non-spore-forming, flagellated, motile, aerobic, rod-shaped bacteria strain, designated YY2XT, was isolated from chromium-contaminated soil. Phylogenetic analysis based on 16S rRNA gene, recA gene, and whole genome indicated that the strain represented a new member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. The phylogenetic trees based on 16 s rRNA gene, revealed that Falsochrobactrum ovis DSM26720T (96.7%), Ochrobactrum gallinifaecis DSM15295T (96.2%), and Pseudochrobactrum asaccharolyticum DSM25619T (96.2%) are the most closely related phylogenetic neighbors of strain YY2XT. The draft genome of YY2XT was approximately 4,650,646 bp in size with a G + C content of 53.0 mol%. Average nucleotide identity and digital DNA-DNA hybridization values among strain YY2XT and the selected Brucellaceae species were 71.4-83.1% and 13.5-42.7%, which are below the recommended cut-off values for species delineation. Growth of strain YY2XT occurred within pH 5-10 (optimum, pH 7-8), 4 ℃-42 °C (optimum, 30 °C), and NaCl concentrations of 0.0-6.0% (optimum, 1.0%). Major quinone system was ubiquinone 10, the major fatty acids were C16:0, C18:1ω7c, and C16:1ω7c and the major polyamines were spermidine and putrescine. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, and four undefined lipids. On the basis of the phenotypic, genotypic and chemotaxonomic traits, strain YY2XT was considered to represent a novel species of the genus Ochrobactrum, for which the name Ochrobactrum chromiisoli sp. nov. is proposed. The type strain is YY2XT (= CCTCC AB 2023035T = JCM 36000T).
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Li Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng-Yao Hu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guang-Yang Jiang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jia Chen
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi-Chen Yang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
5
|
Zhao ZS, Yang LY, Li FX, Cun W, Wang XY, Cao CQ, Zhang QL. Gut flora alterations among aquatic firefly Aquatica leii inhabiting various dissolved oxygen in fresh water. iScience 2023; 26:107809. [PMID: 37744031 PMCID: PMC10514463 DOI: 10.1016/j.isci.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Knowledge about the impact of different dissolved oxygen (DO) on the composition and function of gut bacteria of aquatic insects is largely unknown. Herein, we constructed freshwater environments with different DOs (hypoxia: 2.50 ± 0.50, normoxia: 7.00 ± 0.50, and hyperoxia: 13.00 ± 0.50 mg/L) where aquatic firefly Aquatica leii larvae lived for three months. Their gut flora was analyzed using the combination of 16S rRNA amplicon sequencing and metagenomics. The results showed no difference in alpha diversity of the gut flora between A. leii inhabiting various DOs. However, the relative abundance of several bacterial lineages presented significant changes, such as Pseudomonas. In addition, bacterial genes with an altered relative abundance in response to various DOs were primarily related to metabolism. The alteration of these functions correlated with the DO change. This is the first to uncover structure of gut flora under various DOs in aquatic insect larvae.
Collapse
Affiliation(s)
- Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Fu-Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Cun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xing-Yan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng-Quan Cao
- College of Life Sciences, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784. [PMID: 33956594 PMCID: PMC8289204 DOI: 10.1099/ijsem.0.004784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, University of Montpellier, CIRAD, INRAE, SupAgro, LSTM, Montpellier, France
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research Programme, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | |
Collapse
|
7
|
Ryan MP, Pembroke JT. The Genus Ochrobactrum as Major Opportunistic Pathogens. Microorganisms 2020; 8:E1797. [PMID: 33207839 PMCID: PMC7696743 DOI: 10.3390/microorganisms8111797] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Ochrobactrum species are non-enteric, Gram-negative organisms that are closely related to the genus Brucella. Since the designation of the genus in 1988, several distinct species have now been characterised and implicated as opportunistic pathogens in multiple outbreaks. Here, we examine the genus, its members, diagnostic tools used for identification, data from recent Ochrobactrum whole genome sequencing and the pathogenicity associated with reported Ochrobactrum infections. This review identified 128 instances of Ochrobactrum spp. infections that have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Ochrobactrum spp. outbreaks if these bacteria are clinically isolated in more than one patient and that Ochrobactrum spp. are more important pathogens than previously thought.
Collapse
Affiliation(s)
- Michael P. Ryan
- Department of Applied Sciences, Limerick Institute of Technology, Moylish V94 EC5T, Limerick, Ireland;
- Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland
| | - J. Tony Pembroke
- Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland
| |
Collapse
|
8
|
Szpakowska N, Kowalczyk A, Jafra S, Kaczyński Z. The chemical structure of polysaccharides isolated from the Ochrobactrum rhizosphaerae PR17T. Carbohydr Res 2020; 497:108136. [DOI: 10.1016/j.carres.2020.108136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/28/2022]
|
9
|
de Lajudie P, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019. Int J Syst Evol Microbiol 2020; 70:3563-3571. [DOI: 10.1099/ijsem.0.004157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Minutes of the closed meeting of the ICSP Subcommittee on the Taxonomy of Rhizobia and Agrobacteria held by videoconference on 17 July 2019, and list of recent species.
Collapse
|