1
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
2
|
He C, Sun X, Huang Z, Wang Z, Luo X, Song J, Wang X, Zhao J, Xiang W. Saccharothrix luteola sp. nov., a novel cellulose-degrading actinobacterium isolated from soil and emended description of the genus Saccharothrix. Int J Syst Evol Microbiol 2022; 72. [PMID: 36268867 DOI: 10.1099/ijsem.0.005572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A novel cellulose-degrading actinobacterium, designated strain NEAU-S10T, was isolated from soil collected from Chifeng, Inner Mongolia Autonomous Region, PR China, and characterized using a polyphasic approach. Pairwise similarity of the 16S rRNA gene sequence showed that strain NEAU-S10T was a representative of Saccharothrix and was closely related to Saccharothrix carnea NEAU-yn17T (99.2 %), Saccharothrix saharensis SA152T (99.0 %), Saccharothrix texasensis DSM 44231T (98.5 %) and Saccharothrix xinjiangensis NBRC 101911T (98.5 %). Physiological and chemotaxonomic characteristics of the strain further supported its affiliation to the genus Saccharothrix. The whole-cell sugars contained galactose, ribose and mannose. The polar lipids contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinones were MK-9(H0), MK-9(H2), MK-9(H4) and MK-10(H4). The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The genomic DNA G+C content was 71.8 mol%. The levels of digital DNA-DNA hybridization between isolate and S. carnea NEAU-yn17T, S. saharensis SA152T and S. texasensis DSM 44231T were 40.1 % (37.6-42.6 %), 38.soap8 % (36.3-41.3 %) and 44.8 % (42.2-47.3 %) and the ANI values between them were determined to be 90.2, 89.8 and 91.7 %, the results indicated that strain NEAU-S10T could be distinguished from its reference strains. The assembled genome sequence of strain NEAU-S10T was found to be 10 305 394 bp long. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed 8 994 protein-coding genes. Genomic analysis and Congo red staining test indicated that strain NEAU-S10T had the potential to degrade cellulose. The genomic and phenotypic results indicate that strain NEAU-S10T represents a novel species of the genus Saccharothrix, for which the name Saccharothrix luteola sp. nov. is proposed, with NEAU-S10T (=CCTCC AA 2020037T=JCM 34800T) as the type strain.
Collapse
Affiliation(s)
- Chuan He
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zhenzhen Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Zishan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xianxian Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University,, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
3
|
Jin CZ, Jin L, Liu MJ, Lee JM, Park DJ, Kim CJ. Solihabitans fulvus gen. nov., sp. nov., a member of the family Pseudonocardiaceae isolated from soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic taxonomic study was carried out on an actinobacterial strain (AN110305T) isolated from soil sampled in the Republic of Korea. Cells of the strain were Gram-stain-positive, aerobic, non-motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of strain AN110305T with
Actinomycetia
, with highest pairwise sequence similarities to
Goodfellowiella coeruleoviolacea
DSM 43935T (97.6%),
Umezawaea tangerina
MK27-91F2T (97.0%),
Kutzneria chonburiensis
NBRC 110610T (96.9%),
Kutzneria buriramensis
A-T 1846T (96.8%),
Umezawaea endophytica
YIM 2047XT (96.8%),
Kutzneria albida
NRRL B-24060T (96.7%) and
Saccharothrix coeruleofusca
NRRL B-16115T (96.6%). Cells of strain AN110305T formed pale-yellow colonies on Reasoner's 2A agar. MK-9 (H4) (68%) and MK-10 (H4) (32%) were the predominant menaquinones. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethyl ethanolamine, hydroxy-phosphatidylethanolamine, an unidentified aminolipid and an unidentified aminophospholipid were major polar lipids. Iso-C16:0 (24.5%), anteiso-C15:0 (19.3%), anteiso-C17:0 (15.7%) and iso-C15:0 (15.2%) were the major fatty acids and meso-diaminopimelic acid was the pepdidoglycan. The cell-wall sugars were composed of galactose, glucose, mannose and ribose. The genomic DNA G+C content was 70.7 mol%. Based on genotypic and phenotypic data, strain AN110305T could be distinguished from all genera within the family
Pseudonocardiaceae
and represents a novel genus and species named Solihabitans fulvus gen. nov., sp nov. The type strain is AN110305T (=KCTC 39307T =DSM 103572T).
Collapse
Affiliation(s)
- Chun-Zhi Jin
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210-037, PR China
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210-037, PR China
| | - Min-Jiao Liu
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jong-Min Lee
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dong-Jin Park
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Chang-Jin Kim
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| |
Collapse
|
4
|
Assessment of VITEK® 2, MALDI-TOF MS and full gene 16S rRNA sequencing for aerobic endospore-forming bacteria isolated from a pharmaceutical facility. METHODS IN MICROBIOLOGY 2022; 194:106419. [DOI: 10.1016/j.mimet.2022.106419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
5
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Liu S, Wang T, Lu Q, Li F, Wu G, Jiang Z, Habden X, Liu L, Zhang X, Lukianov DA, Osterman IA, Sergiev PV, Dontsova OA, Sun C. Bioprospecting of Soil-Derived Actinobacteria Along the Alar-Hotan Desert Highway in the Taklamakan Desert. Front Microbiol 2021; 12:604999. [PMID: 33790875 PMCID: PMC8005632 DOI: 10.3389/fmicb.2021.604999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Taklamakan desert is known as the largest dunefield in China and as the second largest shifting sand desert in the world. Although with long history and glorious culture, the Taklamakan desert remains largely unexplored and numerous microorganisms have not been harvested in culture or taxonomically identified yet. The main objective of this study is to explore the diversity, novelty, and pharmacological potential of the cultivable actinomycetes from soil samples at various sites along the Alar-Hotan desert highway in the Taklamakan desert. A total of 590 actinobacterial strains were recovered by the culture-dependent approach. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences unveiled a significant level of actinobacterial diversity with 55 genera distributed in 27 families of 12 orders. Thirty-six strains showed relatively low 16S rRNA similarities (<98.65%) with validly described species, among which four strains had already been characterized as novel taxa by our previous research. One hundred and forty-six actinobacterial isolates were selected as representatives to evaluate the antibacterial activities and mechanism of action by the paper-disk diffusion method and a double fluorescent protein reporter "pDualrep2" system, respectively. A total of 61 isolates exhibited antagonistic activity against the tested "ESKAPE" pathogens, among which seven strains could produce bioactive metabolites either to be able to block translation machinery or to induce SOS-response in the pDualrep2 system. Notably, Saccharothrix sp. 16Sb2-4, harboring a promising antibacterial potential with the mechanism of interfering with protein translation, was analyzed in detail to gain deeper insights into its bioactive metabolites. Through ultra-performance liquid chromatography (UPLC)-quadrupole time-of-flight (QToF)-MS/MS based molecular networking analysis and databases identification, four families of compounds (1-16) were putatively identified. Subsequent bioassay-guided separation resulted in purification of four 16-membered macrolide antibiotics, aldgamycin H (8), aldgamycin K (9), aldgamycin G (10), and swalpamycin B (11), and their structures were elucidated by HR-electrospray ionization source (ESI)-MS and NMR spectroscopy. All compounds 8-11 displayed antibacterial activities by inhibiting protein synthesis in the pDualrep2 system. In conclusion, this work demonstrates that Taklamakan desert is a potentially unique reservoir of versatile actinobacteria, which can be a promising source for discovery of novel species and diverse bioactive compounds.
Collapse
Affiliation(s)
- Shaowei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Wang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinpei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feina Li
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gang Wu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhongke Jiang
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xugela Habden
- College of Life Science, Xinjiang Normal University, Urumchi, China
| | - Lin Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaolin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dmitry A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|