1
|
Quijada L, Matočec N, Kušan I, Tanney JB, Johnston PR, Mešić A, Pfister DH. Apothecial Ancestry, Evolution, and Re-Evolution in Thelebolales (Leotiomycetes, Fungi). BIOLOGY 2022; 11:biology11040583. [PMID: 35453781 PMCID: PMC9026407 DOI: 10.3390/biology11040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Leotiomycetes is one of the most speciose classes of the phylum Ascomycota (Fungi). Its species are mainly apothecioid, paraphysate, and possess active ascospore discharge. Thelebolales are a distinctive order of the Leotiomycetes class whose members have mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, a great diversity of peridia have evolved as adaptations to different dispersal strategies. The genus Thelebolus is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In our work, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. A new family, Holwayaceae, is proposed within Thelebolales, comprising three genera: Holwaya, Patinella, and Ramgea. Abstract Closed cleistothecia-like ascomata have repeatedly evolved in non-related perithecioid and apothecioid lineages of lichenized and non-lichenized Ascomycota. The evolution of a closed, darkly pigmented ascoma that protects asci and ascospores is conceived as either an adaptation to harsh environmental conditions or a specialized dispersal strategy. Species with closed ascomata have mostly lost sterile hymenial elements (paraphyses) and the capacity to actively discharge ascospores. The class Leotiomycetes, one of the most speciose classes of Ascomycota, is mainly apothecioid, paraphysate, and possesses active ascospore discharge. Lineages with closed ascomata, and their morphological variants, have evolved independently in several families, such as Erysiphaceae, Myxotrichaceae, Rutstroemiaceae, etc. Thelebolales is a distinctive order in the Leotiomycetes class. It has two widespread families (Thelebolaceae, Pseudeurotiaceae) with mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, closed ascomata dominate and a great diversity of peridia have evolved as adaptations to different dispersal strategies. The type genus, Thelebolus, is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In this scheme, species with closed ascomata, a lack of paraphyses, and passive ascospore discharge exhibit derived traits that evolved in adaptation to cold ecosystems. Here, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus, involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. We propose a new family, Holwayaceae, within Thelebolales, that retains the phenotypic features exhibited by species of Thelebolus, i.e., pigmented capitate paraphyses and active asci discharge with an opening limitation ring.
Collapse
Affiliation(s)
- Luis Quijada
- Department of Organismic and Evolutionary Biology, The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA;
- Correspondence: (L.Q.); (I.K.)
| | - Neven Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
| | - Ivana Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
- Correspondence: (L.Q.); (I.K.)
| | - Joey B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, BC V8Z 1M5, Canada;
| | - Peter R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland 1072, New Zealand;
| | - Armin Mešić
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia; (N.M.); (A.M.)
| | - Donald H. Pfister
- Department of Organismic and Evolutionary Biology, The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA;
| |
Collapse
|
2
|
Cazabonne J, Bartrop L, Dierickx G, Gafforov Y, Hofmann TA, Martin TE, Piepenbring M, Rivas-Ferreiro M, Haelewaters D. Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:860777. [PMID: 37746218 PMCID: PMC10512293 DOI: 10.3389/ffunb.2022.860777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, Amos, QC, Canada
| | | | - Glen Dierickx
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
| | - Thomas E. Martin
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
| | - Meike Piepenbring
- Mycology Working Group, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Mauro Rivas-Ferreiro
- Population Genetics and Cytogenetics Group, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
- Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia
| |
Collapse
|
3
|
Fatemi S, Haelewaters D, Urbina H, Brown S, Houston ML, Aime MC. Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, Sporidiobolales): An Abundant Component of Romaine Lettuce Phylloplanes. J Fungi (Basel) 2022; 8:jof8030302. [PMID: 35330304 PMCID: PMC8951336 DOI: 10.3390/jof8030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Shifts in food microbiomes may impact the establishment of human pathogens, such as virulent lineages of Escherichia coli, and thus are important to investigate. Foods that are often consumed raw, such as lettuce, are particularly susceptible to such outbreaks. We have previously found that an undescribed Sporobolomyces yeast is an abundant component of the mycobiome of commercial romaine lettuce (Lactuca sativa). Here, we formally describe this species as Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, and Sporidiobolales). We isolated multiple strains of this yeast from commercial romaine lettuce purchased from supermarkets in Illinois and Indiana; additional isolates were obtained from various plant phylloplanes in California. S. lactucae is a red-pigmented species that is similar in appearance to other members of the genus Sporobolomyces. However, it can be differentiated by its ability to assimilate glucuronate and D-glucosamine. Gene genealogical concordance supports S. lactucae as a new species. The phylogenetic reconstruction of a four-locus dataset, comprising the internal transcribed spacer and large ribosomal subunit D1/D2 domain of the ribosomal RNA gene, translation elongation factor 1-α, and cytochrome B, places S. lactucae as a sister to the S. roseus clade. Sporobolomyces lactucae is one of the most common fungi in the lettuce microbiome.
Collapse
Affiliation(s)
- Samira Fatemi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Makenna L. Houston
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Correspondence:
| |
Collapse
|